
29.04.2024

Performance, latency
and scaling

RTB HOUSE
Jarosław Rzeszótko

Performance from the users
perspective

Example user interaction with a web service
(HTTP/1.0, no keepalive etc.):

● Type URL in the browser

● Resolve domain name in DNS

● Establish HTTP connection to main host

• Establish TCP connection to host

• Establish TLS connection

● Fetch HTML over the established connection

● Parse HTML, build DOM, start rendering

● Fetch assets: JS/CSS/images/fonts/etc.

● …

Performance
from the users
perspective

Example user interaction

with a web service

(HTTP/1.0, no keepalive etc.)

● …

● Fetch assets: JS/CSS/images/fonts/etc.

• For each asset:

▪ Resolve domain name in DNS

▪ Establish TCP connection to host

▪ Possibly establish TLS connection

• …

● …

Problem: round trips
Round trip time / RTT / ping - time needed for any amount of data to

flow from source to destination and back.

Can be measured with the ping command:

PING creativecdn.com (185.184.8.65) 56(84) bytes of data.

64 bytes from ip-185-184-8-65.rtbhouse.net (185.184.8.65): icmp_seq=1 ttl=56 time=32.5 ms

64 bytes from ip-185-184-8-65.rtbhouse.net (185.184.8.65): icmp_seq=2 ttl=56 time=32.5 ms

64 bytes from ip-185-184-8-65.rtbhouse.net (185.184.8.65): icmp_seq=3 ttl=56 time=35.0 ms

64 bytes from ip-185-184-8-65.rtbhouse.net (185.184.8.65): icmp_seq=4 ttl=56 time=35.7 ms

64 bytes from ip-185-184-8-65.rtbhouse.net (185.184.8.65): icmp_seq=5 ttl=56 time=33.1 ms

^C

--- creativecdn.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4006ms

rtt min/avg/max/mdev = 32.467/33.740/35.652/1.335 ms

Problem: round trips

Client
(Warsaw)

Server
(Amsterdam)

RTT = 30ms

SYN (15ms)

SYN + ACK (15ms)

ACK (15ms)

45ms to establish TCP connection

Problem: round trips

Client
(Warsaw)

Server
(Amsterdam)

RTT = 30ms

ClientHello (15ms)

ServerHello
Certificate

Server HelloDone
(15ms)

60ms to establish TLS connection

ClientKeyexchange
ChangeCipherSpec

Finished
(15ms)

ChangeCipherSpec
Finished
(15ms)

Problem:
round trips

For two given geographic locations of client and server, round trip time
has a physical lower limit given by the speed of light.

Problem: round trips

Speed of light in vacuum: 300 000 000 m/s
Speed of light in optical fiber: 200 000 000 m/s
Distance from Warsaw to Amsterdam: 1 100 000 m

1 100 000 m / 200 000 000 m/s = 0.0055 s = 5.5 ms

2 * 5.5 ms = 11 ms best-case round trip

0% loss258ms

0% loss251ms

0% loss95ms

0% loss236ms

0% loss256ms

0% loss279ms

0% loss1172ms

0% loss99ms

0% loss244ms

0% loss173ms

0% loss122ms

0% loss42ms

0% loss36ms

0% loss26ms

0% loss23ms

0% loss24ms

0% loss6ms

0% loss17ms

0% loss208ms

0% loss190ms

0% loss96ms

0% loss146ms

0% loss104ms

0% loss117ms

0% loss145ms 0% loss11ms

0% loss0ms

0% loss202ms

0% loss88ms

0% loss174ms

0% loss118ms

0% loss33ms

https://tools.bunny.net/latency-test?query=creativecdn.com

https://tools.bunny.net/latency-test?query=creativecdn.com

Problem:
round trips

TCP is not using full bandwidth immediately after handshake:

The OS sending data uses a congestion control algorithm that controls how much data

is injected into the network

Problem: round trips
• Congestion window (cwnd) on the sending side OS controls

how many bytes can be in-flight.

• TCP starts in “slow start” (unfortunate name):

cwnd = 10*MSS =~ 15kB (on Linux, MSS - Maximum Segment Size)

cwnd += MSS after every ACK

• Exponential growth:

cwnd(t + RTT) = 2*cwnd(t)

• Continues until congestion is detected.

Problem: round trips

With 20ms RTT and no loss:

segments_acked(0ms) = 0 cwnd(0ms) = 10

segments_acked(20ms) = 10 cwnd(20ms) = 20

segments_acked(40ms) = 30 cwnd(40ms) = 40

segments_acked(60ms) = 70 cwnd(60ms) = 80

segments_acked(80ms) = 150 cwnd(80ms) = 160

segments_acked(100ms) = 310 cwnd(100ms) = 320

310*1.5kB = 465kB sent and ACKed after 100ms

Problem:
head-of-line blocking in HTTP up to 1.1

When a HTTP request is sent over a TCP connection

(perhaps also TLS encrypted), second request

 can not be sent until the server processes

the first request and response

Head-of-line blocking:
open more connections?

In the client

In the server

In the infrastructure between the client and the server

Opening connections costs memory and CPU (with TLS)

HTTP/2
Multiple interleaved streams:

Client HTTP/2
Server

HTTP/2
Stream 1
Frame 1

HEADERS

HTTP/2
Stream 2
Frame 1

HEADERS

HTTP/2
Stream 1
Frame 2

DATA

HTTP/2
Stream 2
Frame 2

DATA

TCP connection

TLS connection

HTTP/2
Stream 2
Frame 2

DATA

HTTP/2
Stream 2
Frame 1

HEADERS

Problem:
head-of-line blocking in TCP

HTTP/2 still uses TCP, if the TCP stream is missing a byte somewhere

in the stream, all HTTP/2 streams will be paused until that byte

is retransmitted and received.

HTTP/3 & QUIC

QUIC
has a single
handshake

establishing an
encrypted channel,
instead of the two
separate TCP and
TLS handshakes in

HTTP/2

QUIC
does its own

congestion control

QUIC
is based on UDP

HTTP/3
is the application
layer, QUIC is the

transport layer

Measuring end-to-end latency
in the browser
Browsers expose APIs helpful for measuring latency:

• Navigation Timing API

o For measuring root document load times

• Resource Timing API

o For measuring load times of assets

Can collect data in client-side JS and send to some internal reporting API.

• Determines the users experience

What is the maximum acceptable
latency for this service?

Performance from the service
maintainers perspective

What is the maximum traffic
the service can handle,

while keeping latency acceptable?

• Determines the operating cost

Service maintainer faces two basic
performance-related questions:

Performance from the service
maintainers perspective

Latency

time to complete a
single operation

(operation = HTTP
request/RPC call/DB

transaction/…)

Throughput

number of operations
completed per unit of

time

Offered load

number of operations
issued per unit of

time

To try to answer the basic questions we need
some basic definitions:

• Over the time period [0.0s, 1.0s]:

offered load = 3 req/s,

throughput = 2 req/s

• Over the time period [0.0s, 4.0s]:

offered load = 12 req / 4s,

throughput = 12 req / 4s

• Average over the time period [0.0s, 4.0s]:

offered load = 3 req/s,

throughput = 3 req / s

Measuring offered
load and throughput

Request

Request

Request

Request

Request

Request

Request

RequestRequest Request

Request

Request

1.0 s0.0 s 2.0 s 3.0 s 4.0 s

• Increment counter each time a request arrives

• Each T seconds store the value of the counter

Measuring offered
load and throughput

Request

Request

Request

Request

Request

Request

Request

RequestRequest Request

Request

Request

1.0 s0.0 s 2.0 s 3.0 s 4.0 s

To measure offered load:

• Increment counter each time a response

has been sent

• Each T seconds store the value of the counter

Measuring offered
load and throughput

Request

Request

Request

Request

Request

Request

Request

RequestRequest Request

Request

Request

1.0 s0.0 s 2.0 s 3.0 s 4.0 s

To measure throughput:

Measuring offered load and throughput

As a result servers produce streams of per-second counts as metrics:

Server 1:

offered load: [12:00:00: 1 req started, 12:00:01: 5 req started, …]

throughput: [12:00:00: 1 req completed, 12:00:01: 3 req completed, …]

Server 2:

offered load: [12:00:00: 2 req started, 12:00:01: 5 req started, …]

throughput: [12:00:00: 2 req completed, 12:00:01: 5 req completed, …]

Measuring offered load
and throughput

This stream of per-second counts can be stored in a time-series database

like Prometheus or InfluxDB, and then queried in different ways:

• What was the average request rate/s between 12:00 and 12:01 across all servers?

• What was the throughput of the slowest server between 12:00 and 13:00?

• …

Measuring offered load and throughput

Why is the distinction between offered load
and throughput important?

B
the system

has slowed down
(e.g. due to

a code change, config
change, etc.)

A
the system

is overloaded
because of increased
traffic (offered load)

Imagine you are monitoring a server that suddenly started suffering from
increased response latency.

The first thing to do is to find out if:

or

Measuring offered load and throughput

If the system is overloaded
by increased traffic:

• Offered load has increased

• Throughput could have stayed the same
or even decreased!

• As offered load keeps increasing throughput:

o increases slower and slower
o stops increasing at all

o might start decreasing

If the system has
slowed down:

• Offered load has stayed the same
(e.g. compared to yesterday)

• Throughput has decreased

If you only monitor throughput, you can’t tell if the system is
overloaded or slowed down!

• Store request durations

• Each millisecond/second/minute store

the average latency?

• ???

Measuring latency

Request

Request

Request

Request

Request

Request

Request

RequestRequest Request

Request

Request

1.0 s0.0 s 2.0 s 3.0 s 4.0 s

To measure latency

Why is average latency
confusing?

MEASURING LATENCY

Measuring latency
Why is average latency confusing?

• Latency distributions rarely are

unimodal or symmetric

• Green can be fast-path, red can be slow-path

• Green can be hot cache, red can be cold cach

• Green can be requests without GC pause,

red can be requests with GC pause

• Several of the above combined together can

result in more clusters than just two

Measuring latency
Why is average latency confusing?

User action might trigger several parallel

requests and from the users perspective

be complete only when all requests

complete

Measuring
latency

Client

N = Fan - out

Service B
Shard 1

Service B
Shard …

Service B
Shard N

Service A

Measuring latency

What do instead:

• Want to cap high percentiles:

p95/p99/p999/… at X ms so that user is

unlikely to experience latency > Xms

• p95: X such that

95% data points are <= X

• p99: X such that

99% data points are <= X

• …

Measuring latency

What percentile to use?

• No golden rule, but…

• the higher the fan-out the higher the

percentile

• on the other hand it is much harder to

lower the p999 to 100ms than to

lower the p99 to 100ms

• there are dozens of strange reasons

requests can occasionally slow down

• Store request durations

• Each millisecond/second/minute store

p95/p99/p999/p9999 latency?

Measuring latency

Request

Request

Request

Request

Request

Request

Request

RequestRequest Request

Request

Request

1.0 s0.0 s 2.0 s 3.0 s 4.0 s

To measure latency

To measure latency

• Hint: what if this is one server from many?

• Define histogram buckets, for example

[0ms, 100ms], [100ms, 200ms], …

• Every millisecond/second/minute store the

count of requests in each histogram bucket

• Can aggregate both over time and over

different servers

• Can calculate approximate percentiles

Measuring latency

Request

Request

Request

Request

Request

Request

Request

RequestRequest Request

Request

Request

1.0 s0.0 s 2.0 s 3.0 s 4.0 s

To measure latency

Performance from the service maintainers
perspective

• Define SLA for service performance: p95/p99/p999 <= X ms

What is the maximum acceptable latency for this service?

Performance from the service maintainers
perspective

What is the maximum throughput the service can achieve
while keeping latency acceptable?

• Have to run load tests benchmarks

Benchmarking servers

How would you benchmark an HTTP server?

Performance from
the service maintainers perspective

Service maintainer faces two basic performance-related questions:

What is
the maximum throughput the service can achieve
while keeping latency acceptable?

What is
the maximum acceptable latency for this service?

Benchmarking servers

2.

Send a request over each

connection

Setup some (initially small)

number of connections N

1. 3.

When a request on some

connection completes,

send a new request on

the same connection

5.
After T seconds elapse,

report average number of

responses/s and latency

statistics

4.
Continue sending

requests this way for T

seconds

6.
Increase N

and repeat

Simplest way implemented by most basic

benchmarking tools:

Benchmarking servers

Request

1.0 s0.0 s 2.0 s 3.0 s 4.0 s

Request Request

Request RequestRequest Request

Request Request

Request

Request

RequestRequestRequest Request Request

RequestRequestRequestRequest

Connection 1

Connection 2

Connection…

Connection N

Benchmarking servers

Simplest way implemented by most basic benchmarking tools:

Test is completed when the test workload causes a violation of the SLA.

Previous throughput value (from the test run which did not yet violate the latency SLA)

is the maximum throughput.

This is called a closed system model, because it simulates having a fixed number

of users with no user arrivals and no user departures.

Ideal linear scaling
Assume:

• System has N processors

• C identical tasks are always available, C <= N

(C is the concurrency level, or load in the closed system model)

• One task is fully done by a single processor

(one thread handles one request from start to finish)

We test task completions / sec and mean/p50/p90/p95/… task latency,

as a function of increasing C:

1 <= C <= N

Ideal linear scaling

With linear scaling:

Latency L is constant and independent of the concurrency level C

Throughput T = C * (1/L)

Reasons for non-linear scaling:

explicit synchronization

Reasons for non-linear scaling:
CPU caches & Hyper-Threading

Over the last 40 years, CPUs were getting faster at a faster rate than memory

CPUs are now much faster than memory

CPU design has to deal with the memory bottleneck

CPU cache hierarchy and Hyper-Threading both try to address the bottleneck

CPU cores visible in the OS are NOT independent execution units

Last Level cache (L3 cache) is typically shared between many physical cores

With Hyper-Threading, single physical core is visible as two logical cores in the OS

Reasons for non-linear scaling:
CPU caches & Hyper-Threading

Reasons for non-linear scaling:
CPU caches & Hyper-Threading

Output of hwloc command executed on a server with AMD EPYC 7702P CPU:

NUMANode L#0 P#0 (126GB)

L3(16MB)

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#0

PU L#0
P#0

PU L#1
P#1

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#1

PU L#2
P#2

PU L#3
P#3

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#2

PU L#4
P#4

PU L#5
P#5

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#3

PU L#6
P#6

PU L#7
P#7

L3(16MB)

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#4

PU L#8
P#8

PU L#9
P#9

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#5

PU L#10
P#10

PU L#11
P#11

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#6

PU L#12
P#12

PU L#13
P#13

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#7

PU L#14
P#14

PU L#15
P#1

L3(16MB)

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#60

PU L#120
P#120

PU L#121
P#121

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#61

PU L#122
P#122

PU L#123
P#123

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#62

PU L#124
P#124

PU L#125
P#125

L2(512KB)

Lld(32KB)

Lli(32KB)

Core L#63

PU L#126
P#126

PU L#127
P#127

Package L#0

Machine (126GB total)

16 x
total

Host: b900.creativecdn.net
Date: Tue Nov 22 10:13:35 2022

Reasons for non-linear scaling:
Hyper-Threading & CPU caches

Idea behind caching:

• In hardware design so far, larger memory banks imply higher memory access latency

• Exploit locality of reference to give illusion of memory that is both fast and large

• Spatial locality: If a particular memory location is referenced at a particular time, then it is likely

that nearby memory locations will be referenced in the near future.

• Temporal locality: If at one point a particular memory location is referenced, then it is likely that

the same location will be referenced again in the near future.

Reasons for non-linear scaling:
Hyper-Threading & CPU caches

Idea behind caching:

• Hierarchy of caches

• Per-core very fast & very small L1 cache: 32kB, 1.18ns / 4 cycles access latency

• Per-core fast & small L2 cache: 512kB, 3.86 ns / 13 cycles access latency

• Larger and slower L3 cache shared between cores: 16MB / core complex,

10.27 ns / 34 cycles access latency

Reasons for non-linear scaling:
Hyper-Threading & CPU caches

Downsides of caching:

• There can be a very sharp performance downgrade each time

when the workload stops fitting in given level of the cache

• Programming practices like heavy reliance on pointers and non-contiguous memory

can defeat caching and drastically reduce performance

• Cores sharing L3 cache can not be treated as independent

Reasons for non-linear scaling:
Hyper-Threading & CPU caches

Idea behind hyper-threading:

• A physical CPU core can spend a large percentage of time stalled waiting for memory

• Present a single physical CPU core as two or more logical cores to the OS

• OS can assign two different threads to two logical cores backed

by the same physical core

• While the execution of the first thread is stalled waiting for memory,

second thread can be executed

Reasons for non-linear scaling:
Hyper-Threading & CPU caches

Downsides of hyper-threading:

• The two logical cores present in the OS sharing a physical core are

not independent

• There is a performance downgrade when server utilization cross the threshold

where the OS scheduler can dedicate a single physical core

(almost) exclusively to a single thread

Issues with the closed-system model:
coordinated omission

Request

1.0 s0.0 s 2.0 s 3.0 s 4.0 s

Request Request

Request Request

Request Request

RequestRequestRequest

Connection 1

Connection 2

Connection…

Connection N

Request

Request

GC Pause

See: "How NOT to Measure Latency" by Gil Tene

https://www.youtube.com/watch?v=lJ8ydIuPFeU

https://www.youtube.com/watch?v=lJ8ydIuPFeU

Issues with the closed-system model:
coordinated omission

Test caps the number of

concurrently active

connections to N

-> there are never more than

N requests in the middle of

processing

Problem:

less queuing than real life

Based on the completed

requests/s reports average

throughput X ops/s

When you observe an

average offered load of X

requests/s over a minute in

real life, it might be that at

T=0s, X requests arrived all

at once, X >> N

Open-system model

2.
Generate a plan

up-front:

timestamps at

which requests

should be sent

3.
Grow and shrink

the connection

pool and/or thread

pool of the

benchmarking tool

as needed

4.
Increase R

1.
Assume a request

rate R and a

probability

distribution of

request interarrival

times

5.
Repeat 1-4 until

latency SLA is

violated

This is called a open system model.

Queuing

When:

• offered load > throughput

For some prolonged period of time, it means that either:

A. Requests are getting dropped

B. Requests are getting queued

Queueing example:
HTTP server with new thread per request

HTTP server spawns new

thread for each incoming

request

With enough in-flight HTTP

requests there will be more

server threads than CPUs

Some of the threads will be

executing, others will wait in

the OS scheduler queue

Queuing example:
HTTP server with explicit queue

• HTTP server has N worker threads for processing incoming requests

• Incoming requests are placed into a concurrent queue

• Each of the worker threads works in a loop:

o while (request = queue.poll()) {

request.process()

}

• If a thread is idle when request arrives, handoff is nearly instant

• Otherwise request typically has to wait until it reaches the front of the queue (FIFO)

Queuing

Queuing smoothes out the bursts

Queuing increases utilization at the cost of latency

Queuing can not rescue the service from not having enough capacity

Unlimited queuing can be harmful

Real traffic typically is bursty

Queuing
When:

• offered load > throughput

• requests are getting queued

• there is no limit to the queue length

Then:

A. The queue with continue to grow, consuming resources (memory, sockets, etc.)

B. Latency will continue to grow

Might eventually break in various ways, e.g. run out of memory

and get killed by the OS

Load shedding

Queue the excess 5% -

latency will increase over the

course of the hour, might run

out of memory, out of

sockets, etc.

Drop the excess 5% - e.g.

return empty responses,

serve the remaining traffic in

reasonable time

Serve some % of requests

using a faster code path -

degrade service quality to

improve throughput

Example: incoming request/s exceed completed requests/s

by 5% over an hour

What to do?

A. C.B.

Load shedding

Monitor average response

latency over last X seconds

Monitor average thread pool

utilization over last X

seconds (sample every

100ms, keep last 10 samples,

use average of 10 samples

to decide whether to shed

load or not)

Some way to decide when to start shedding

the load is needed.

A. B.

• Monitor offered load

to tell apart system

overload from

system slowdown

• Latency increases as

offered load increases,

often even at

low/moderate

CPU/disk/etc utilization

• Tail latency matters,

in particular for

services with large

fan out

the larger the

fanout, the larger

part of the “tail”

matters

Summary

• Queues are everywhere

• Overload = offered load >

maximum possible throughput

• On overload, requests either

are dropped or queued

• Queues achieve higher

utilization at the cost of higher

latency, sensible for short bursts

of increased traffic

Summary

• If overload persists for longer

time and requests get queued,

latency goes to infinity as time

goes to infinity

• Services should implement

a deliberate strategy of handling

overload, service maintainers

need to be conscious of the

strategy the service implements

Summary

Thank you.

Jarosław Rzeszótko

