
Infrastructure for Data Analytics and Machine Learning

Part 2 - Large-scale batch processing

Paweł Wiejacha
RTB House

Practical Distributed Systems, 2024 | 1 / 45

Plan for this lecture
What is and why we need batch processing?

How do large-scale data processing engines work?

How can we use them effectively?

Practical Distributed Systems, 2024 | 2 / 45

What is batch processing?
Batch processing - processing large volumes of data at once (in batches

collected over some time)

batch (n.) - a quantity required for or produced as the result of one

operation [1]

mixed a batch of cement; a batch of cookies

Stream processing - processing stream of events as they are produced

continuously piece-by-piece in (more or less) real-time

1 - https://www.thefreedictionary.com/batch

Practical Distributed Systems, 2024 | 3 / 45

https://www.thefreedictionary.com/batch

Batch processing and stream processing

Use cases - batch processing
training machine learning models

book and product recommendations

image classification, object recognition

computing user-tailored offers (e.g. credit cards offers)

processing international money transfers

processing call records to create monthly billing invoices

various background processes

compressing/re-encoding video

performing speech-recognition to add subtitles

data mining

Practical Distributed Systems, 2024 | 4 / 45

Batch processing and stream processing

Use cases - stream processing
fraud detection (must be real-time to prevent detected frauds)

high-frequency stock trading

up-to-the-minute retail inventory management

log and status monitoring, anomaly detection

edge analytics (IoT, smart cities, manufacturing)

load controlling - adjusting service level to current number of requests

Practical Distributed Systems, 2024 | 5 / 45

Batch processing and stream processing

When to choose batch processing?
Batch processing works well when:

you don’t need real-time analytics results

it's more important to process larger volumes of data

e.g. wider context is needed

complete user purchase history instead of last order event

joining and aggregating data from different sources

more computation is needed than what the stream processing pipeline can handle

generally (even in real life) batching is faster because you can reduce various overheads

because there is no "real-time" requirement, there's more time and flexibility, e.g.

we can store intermediate results on a slower medium if they do not fit in the memory

we can perform more precise computations (e.g. increase number of epochs in an iterative algorithm)

Practical Distributed Systems, 2024 | 6 / 45

Batch processing and stream processing

When to choose batch processing? (2)
This is not black or white situation, we can:

preprocess and prepare data as much as possible during stream processing to simplify later batch processing

compute partial aggregates

simplify and normalize the data

partially sort data

perform partial joins

shard or partition data

solve some of our (sub-)problems using a dedicated database (e.g. BigQuery, ClickHouse) instead of writing Map/Reduce

jobs

Practical Distributed Systems, 2024 | 7 / 45

Batch processing and stream processing

Example - computing recommendations
Computing product recommendations is a good example use case for distributed batch processing.

Imagine you have to create recommendation model for a platform

with 4 000 000 000 products

using 645 000 000 000 events:

2022-11-18 14:00:12.241 user <XYZ> was searching for a product <ABC>

2022-11-18 14:00:12.255 user <ZYX> added product <CBA> to a basket

Assuming we only use 8 bytes for product and user identifiers, 4 bytes for an event timestamp, and one byte for the event type,

that's 12.2 TiB of efficiently written essential input data.

in real world, to extract that essential data you need to process 500-1200 TiB of data first

reading 1200 TiB from a single hard drive would take about 72 days. Just to read input data.

To compute recommendation model we need to: sort and group events, compute sparse Item-Item matrix,

factorize it, fine tune recommendations on GPUs using various machine learning techniques, create ANN index, and store

recommendations.

R
4∗ ×4∗109 109

Practical Distributed Systems, 2024 | 8 / 45

Data processing engines

Practical Distributed Systems, 2024 | 9 / 45

How to approach such task?
There are multiple ways, for example:

1. Creating custom solution from the scratch

2. Using existing Big Data frameworks:

Hadoop Map/Reduce, Apache Hive, Apache Spark, Apache Flink, Presto, BigQuery ...

3. Mixing both approaches

Practical Distributed Systems, 2024 | 10 / 45

Apache Spark - prerequisites
Before we can use Apache Spark for large-scale batch processing you need at least:

Computing cluster - machines with reasonable amount of RAM and CPUs

Distributed file system or an object storage - that can store input, output and maybe intermediate data

Resource Manager/Scheduler - that manages our computing cluster

Practical Distributed Systems, 2024 | 11 / 45

Apache Spark - prerequisites (2)
The most popular setup is:

using HDFS (Hadoop Distributed File System) as a distributed storage

HDFS data nodes that store the data blocks are also used as computing nodes

data nodes don't need a lot of RAM nor CPU cores, but they need network card, motherboard, PSU, ...

also performing computations close to data can be very efficient

no need to send data over network, OS page cache can be used for frequently accessed files

using Apache Hadoop YARN as a Scheduler and Resource Manager

Instead of YARN, Kubernetes can be used as a cluster manager, but support for that setting is not very mature

Practical Distributed Systems, 2024 | 12 / 45

Apache Spark - prerequisites (3)
Alternative approach is to use managed Hadoop in the cloud (e.g. Google Dataproc, Amazon EMR):

either using standard Spark + HDFS + YARN combination

or without using HDFS, instead AWS S3 or Google Cloud Storage can be used as a distributed storage

Practical Distributed Systems, 2024 | 13 / 45

Apache Spark

Apache Spark - overview
Spark (Java/Scala) application consists of:

single driver program that orchestrates and executes parallel operations

those operations are performed by multiple executors

The main abstractions are:

Resilient Distributed Dataset (RDD) - collection of elements partitioned across cluster nodes

e.g. having 100 000 files on HDFS (each with multiple records) can result in a RDD with 100 partitions

RDDs can be operated in parallel

RDDs can be transformed, persisted (to disk or to memory), and recomputed in case of a node failure

Broadcast variables - shared, read-only variables available on all executors

Practical Distributed Systems, 2024 | 14 / 45

Apache Spark

RDDs
transformations - operations on an RDD that are performed lazily, e.g.

map(), filter(), groupByKey(), reduceByKey(), join(), union(), sortByKey()

actions - operations on RDD that are performed eagerly and trigger computation of DAGs composed from lazy

transformations, e.g.:

e.g. count(), collect(), reduce(), saveAsXYZ()

Practical Distributed Systems, 2024 | 15 / 45

Apache Spark

Computations DAGs

Practical Distributed Systems, 2024 | 16 / 45

Apache Spark

Apache Spark API - example program (1)
Example: E-commerce order logs

Input

Multiple files on the HDFS inside /warehouse/purchase_logs/, e.g.:

/warehouse/purchase_logs/log-1652658664132_40_hXMzbDepoC.csv
/warehouse/purchase_logs/log-1652658665521_70_aXZzbDCEPQ.csv
...
/warehouse/purchase_logs/log-1652658278519_13_xiTNJreBBT.csv

Each file contains multiple entries with information about products bought by users, e.g.:

<timestamp> <country> <customer_id> <product_id> <product_price>
2022-01-23 17:31:00.131, Poland, User123, ProductABC, 129.99
2022-01-23 17:31:03.217, Brazil, User456, ProductDEF, 499.99
2022-01-23 17:39:03.217, Poland, User123, ProductGHI, 450.79
...

Information about the same user (or product) can occur in multiple files.

Practical Distributed Systems, 2024 | 17 / 45

Apache Spark

Apache Spark API - example program (2)
Goal: find top 100 customers from Poland who spend the most money in our store

Practical Distributed Systems, 2024 | 18 / 45

Apache Spark

Apache Spark API - example program (2)
Goal: find top 100 customers from Poland who spend the most money in our store

type UserId = String
type Price = Float
case class OrderRow(timestamp: String, country: String, userId: UserId, productId: String, price: Price)

val lines: RDD[String] = sparkContext.textFile("/warehouse/purchase_logs/log-*.csv")
val parsedLines: RDD[Array[String]] = lines.map(line => line.split(", ?"))

val orderRows: RDD[OrderRow] = parsedLines
 .map(words => OrderRow(words[0], word[1], words[2], word[3], word[3].toFloat))

val ordersFromPoland = orderRows.filter(order => order.country == "Poland")

val userPrices: RDD[(UserId, Price)] = ordersFromPoland.map(order => (order.userId, order.price))
val summedUserPrices: RDD[(UserId, Price)] = userPrices.reduceByKey((price1, price2) => price1 + price2)
val top100Users: Array[(UserId, Price)] = summedUserPrices
 .sortBy({ case (userId, priceSum) => -priceSum })
 .take(100)

Practical Distributed Systems, 2024 | 18 / 45

Apache Spark

Execution of the example program (1)
DAG of computations will be materialized, then

for each file, one RDD partition will be created

task_00: read_lines(file_00) => partition_00 == stream_of[line1, line2, ...]
task_01: read_lines(file_01) => partition_01 == stream_of[line1, line2, line3, ...]
...
task_99: read_lines(file_99) => partition_99 == stream_of[line1]

every executor will process multiple RDD partitions (perform multiple tasks):

executor_00: [task_01, task_17, task_87, task_99] # datanode A hosts executor_00
executor_01: [task_02, task_05, task_43, task_66] # datanode A hosts also executor_01
...
executor_19: [task_55, task_77, task_88, task_98] # datanode F hosts executor_17, executor_18, executor_19

Datanode A stores files: file_01, file_17, file_87, file_99, file_02, file_05, file_43, file_66
...
Datanode F stores files: file_55, file_77, file_88, file_98, ...

Practical Distributed Systems, 2024 | 19 / 45

Apache Spark

Execution of the example program (2)
To execute tasks, Spark Driver has to serialize closure of a function that has to be executed remotely and send it to every

executor, e.g.

fun: Array[String] => OrderRow = { words => OrderRow(words[0], word[1], words[2], word[3], word[3].toFloat) }

Then executor merges subsequent transformations and produces a stream of results with approximately following

semantic:

lines_stream.
 .map(line => line.split(", ?"))
 .map(words => OrderRow(words[0], word[1], words[2], word[3], word[3].toFloat))
 .filter(order => order.country == "Poland")
 .map(order => (order.userId, order.price))

If our application called ordersFromPoland.saveAsTextFile("/warehouse/temp/orders_from_poland") instead of

reduceByKey(...), we could read and write multiple files in parallel using constant memory

Practical Distributed Systems, 2024 | 20 / 45

Apache Spark

Execution of the example program - shuffle (1)

Certain Spark operations trigger a slow and complex event called shuffle

Shuffle is a mechanism for re-distributing and re-grouping data across partitions

This usually involves copying data between executors (all-to-all),

and if shuffled data is too large to fit in RAM, writing intermediate results to disk

it also requires serializing data and network I/O

Practical Distributed Systems, 2024 | 21 / 45

Apache Spark

Execution of the example program - shuffle (2)

Every task operates on a single partition and is executed by one executor, so to perform:

userPrices // : RDD[(UserId, Price)]; key=UserId, value=Price
 .reduceByKey((price1, price2) => price1 + price2)

which corresponds to:

for (userId <- userPrices.keys()) {
 group: List[Price] = userPrices
 .filter((u, price) => u == userId)
 .map((u, price) => price)
 aggregated_value = group.reduce((price1, price2) => price1 + price2)
 output(userId, aggregated_value)
}

we need to re-group all records with given key, so that they are located within the same partition an can be processed

efficiently by a single executor

Practical Distributed Systems, 2024 | 22 / 45

Apache Spark

Execution of the example program - shuffle (3)

source: https://github.com/JerryLead/SparkInternals
Practical Distributed Systems, 2024 | 23 / 45

https://github.com/JerryLead/SparkInternals

Apache Spark

Execution of the example program - shuffle (4)

There are at least two ways to perform shuffle:

sort based (used by Hadoop Map/Reduce and Spark)

(on-disk) sort records by key using multiple files on a HDFS

this complex parallel external sort

process sorted results in parallel so that all adjacent records with given key are processed by a single Reduce Task

hash-based (used by Spark)

hash keys and write records to resulting buckets (hash(key) % num_buckets)

spilling intermediate data to disk, when it does not fit into memory

process each bucket using a single executor, in parallel

We can reduce work by performing map-side reduces.

Practical Distributed Systems, 2024 | 24 / 45

Apache Spark

Spark SQL, DataFrames and Datasets

RDD is a part of the low-level Spark API

Spark also provides less flexible but (in some cases) more performant APIs:

Dataset interface

Pandas DataFrame-like interface

Spark SQL interface

Those interfaces provide more information about the structure of data and computation being performed

Extra information about data and computations allows for additional optimizations

e.g. reading only a subset of columns, choosing the best join method, reordering of operations

There's also PySpark interface, ML and Graph processing on top of Spark

data
 .filter(col("country").equalTo("Mexico"))
 .groupBy(col("age"))
 .count()

spark.sql("""
SELECT age, count(1)
FROM table_from_rdd
WHERE country = 'Mexico'
GROUP BY age
""")

Practical Distributed Systems, 2024 | 25 / 45

Useful techniques in batch processing

Practical Distributed Systems, 2024 | 26 / 45

Partitioning and clustering

organizing files to allow common tasks to read only necessary subsets of data

by type, by date, by region, vendor or category

storing the same events multiple times in multiple clusters

/warehouse/products/...
/warehouse/user-reviews/...
/warehouse/browsing_events/...
/warehouse/browsing_events/2022-05-01/...
/warehouse/browsing_events/2022-05-02/...
/warehouse/browsing_events/2022-05-03/...
/warehouse/browsing_events/2022-05-04/region=us/...
/warehouse/browsing_events/2022-05-04/region=eu/log-1652658664132_40_hXMzbDepoC.avro.snappy
/warehouse/browsing_events/2022-05-04/region=eu/log-1652658665521_70_aXZzbDCEPQ.avro.snappy
/warehouse/browsing_events/2022-05-04/region=eu/log-1652658278519_13_xiTNJreBBT.avro.snappy
/warehouse/browsing_events/2022-05-04/region=eu/...
/warehouse/subscriptions/...
/warehouse/purchases/...

Practical Distributed Systems, 2024 | 27 / 45

Sorting and merging

Having sorted data can be useful

we can use binary search, skip-list-like or sampled indices

we merge multiple sorted streams - very useful operation

joining two "tables" using common key

processing multiple shards

merge sorting

we can reduce by key easily when data is sorted

sorted data compresses better

SELECT ... FROM users LEFT JOIN purchases ON (users.id == purchases.user_id)

records sorted by User.id: (U1, P.U1), (U2, NULL), []
users-shard1.avro: U1, U3, ... U1, [U3], ...
users-shard2.avro: U4, U6, ... [U4], U6, ...
users-shard3.avro: U2, U4, U7, ... U2, [U4], U7, ...

records sorted by Purchase.user_id
purchases-shard1.avro: P.U1, P.U6, P.U7, ... P.U1, [P.U6], P.U7, ...
purchases-shard2.avro: P.U3, P.U4, ... [P.U3], P.U4, ...

Practical Distributed Systems, 2024 | 28 / 45

input_files.parallelize()
 .flatMap(read_events)
 .map(process_single_event) # process multiple files in parallel

get_paths(f"/temp/stage4/shard.*.*.avro").parallelize()
 .map(sort_file) # also parallel, sorting small files in memory

range(NUM_SHARDS).parallelize() # process every shard in parallel
 .map({ shard_id =>
 get_paths(f"/temp/stage5/sorted-shard.*.{shard_id}.avro")
 .mergeSortedStreams() # lazy (iterator-based) merging
 .foldLeft(NoUser)(process_full_user_history)
 })

def process_single_event(event):
 computed_result = compute(event)
 shard_id = hash(event.user_id) % NUM_SHARDS
 write_to(computed_result,
 f"/temp/stage4/shard.{worker_id}.{shard_id}.avro")

def process_full_user_history(state, event):
 if event.user_id == state.previous_user_id:
 ...
 else:
 ... # new user encountered

Sharding

Sharding - partitioning data or computations horizontally so that each data shard is stored or handled by a different server,

process, thread etc.

similar to partitioning

but it's rather related to spreading load/computations/responsibility evenly

compared to reducing amount of data read

Example: do-it-yourself groubyByKey() using sharding and sorting

Practical Distributed Systems, 2024 | 29 / 45

Sampling

For many tasks and queries using sample of data is enough

sometimes we are not able store all data

sometimes processing all data is too slow and increasing amount of processed data gives diminishing gains

Sometimes we need samples from different distributions:

if random() < 0.1: # uniform event sampling, 10%
 write_sample(event)

if hash(event.user_id) % 1000 < 100: # uniform user sampling, 10%
 write_sample(event)

sometimes can keep all important events (e.g. conversions) and sample of ordinary events (home page visits)

nothing prevents us from having sampled and whole dataset at the same time:

/warehouse/browsing_events/2022-05-04/sample=1/.. # 1..1, 10 GB
/warehouse/browsing_events/2022-05-04/sample=10/.. # 2..10, 90 GB
/warehouse/browsing_events/2022-05-04/sample=100/.. # 11..100, 900 GB

Practical Distributed Systems, 2024 | 30 / 45

Reducing amount of stored and processed information

sometimes it's worth re-examine stored data and decide if everything we write is useful

maybe some fields or columns are no longer needed or redundant?

during processing the faster we reduce every record to bare minimum the better, this reduces amount of data that:

need to be serialized,

send over network,

shuffled,

sorted,

spilled to disks,

kept in RAM,

etc.

also parsing and casting done early can reduce amount of processed data (e.g. converting timestamp strings to int64)

Practical Distributed Systems, 2024 | 31 / 45

Pushing projections up

In some cases in may be better to perform redundant computations to reduce amount of processed data. Compare:

val userVisits: RDD[(UserId, (VisitStartDate, List[UserAction]))] = ... // 200 TB of data to shuffle
val lastUserVisits = user_visits
 .reduceByKey(takeMoreRecentVisit) // for every user, find his latest visit

lastUserVisits
 .mapValues(visit => computeFraudScore(visit)) // detect suspicioius users using heavy ML algorithm
 .filterValues(fraudScore => fraudScore > 0.8)
 .saveAsAvro("suspiciousUsers.avro")

and

val userVisits: RDD[(UserId, (VisitStartDate, List[UserAction]))] = ... // 200 TB of data
val suspiciousVisits = userVisits
 .mapValues(visit => (visit.date, computeFraudScore(visit))) // redundant heavy computations, for every visit
 .filterValues((_, fraudScore) => fraudScore > 0.8)

suspiciousVisits : RDD[(UserId, (VisitStartDate, Float))] // but only 5 GB of data to shuffle
 .reduceByKey(takeMoreRecentVisit) // for every user, find his latest visit
 .saveAsAvro("suspiciousUsers.avro")

Practical Distributed Systems, 2024 | 32 / 45

Denormalization

Sometimes to avoid complex joins it's worth to consider keeping:

raw events

(redundant) big complex snapshots (e.g. snapshot of all records related to user XYZ)

those can be stored

periodically (e.g. every day at midnight)

or even with every request

optionally, redundant periodical deltas containing consolidated information that changed since last snapshot

In our example, to materialize user profile at requested point of time

instead of reading all records about user XYZ stored in hundreds of files created during last 2 years

we could use the latest snapshot of user XYZ history + few deltas + few raw events

Storing redundant materialized snapshots will consume huge amounts of storage space, but it's worth considering as it

might speed up simplify batch processing.

Practical Distributed Systems, 2024 | 33 / 45

Caching and precomputing

caching can introduce subtle bugs, but it's worth considering caching, especially if

performed computation is slow or cached computation result is smaller than data needed to compute that result

we can cache things in memory or store intermediate results on to disk to read them multiple times

we can also cache results computed by the previous batch processing job, for example:

if every day we process rolling window consisting of data from last days

we can change our algorithm to reuse previous results, i.e.

remove data from day ago and use changes from the newest day

n=7
batch job on day=8:
[1] [2] [3] [4] [5] [6] [7] [8]
 ^------- compute
 <---------------------> reuse
 ^---- remove

batch job on day=9:
[2] [3] [4] [5] [6] [7] [8] [9]
 ^------- compute
 <---------------------> reuse
 ^---- remove

n

n + 1

Practical Distributed Systems, 2024 | 34 / 45

Tiering, prefetching and buffering

Tiering - arranging something in tiers (layers)

We should keep in mind speeds, properties and capacities of various memory types, e.g.

keep frequently accessed data (or data that need random access) on SSD or in RAM

using fact that we can read from HDD faster if we read large continuous chunks of data

if we expect data to be read in the near future we can prefetch it the background or keep constant read-ahead buffer

sometimes manually juggling data paired with sharding can give spectacular effects

Practical Distributed Systems, 2024 | 35 / 45

Bloom filters and sketches (1)

Bloom filter is a compact probabilistic data structure that can be used to test if an element is a member of a set.

no false negatives – if tested element belongs to a set, bloom filter will always return true

false positives are possible – bloom can return true for element that does not belong to a set

General idea:

Bloom filter is a bit array of m bits, all set to 0.

when we add an element to a set, we hash it using k different hash functions

we turn on every bit indicated by

to test whether element belongs to a set, we check that every bits are 1

We can choose to get very compact filter with desired False Positive Rate (FPR). A Bloom filter with a 1% FPR and an

optimal needs only ~9.6 bits per element (which can be anything identifier, string, blob of bytes, image).

Usage examples:

checking bloom filter before trying to retrieve from slower medium or external source

using bloom filter during broadcast joins

: Universe → {1, . . ,m}hi

(element) : i ∈ {1. . k}hi

bit_array[(element)] : i ∈ {1. . k}hi

n, k,m

k

source: https://en.wikipedia.org/wiki/Bloom_filter#/media/File:Bloom_filter.svg
Practical Distributed Systems, 2024 | 36 / 45

https://en.wikipedia.org/wiki/Bloom_filter#/media/File:Bloom_filter.svg

Bloom filters and sketches (2)

Count–min sketch - probabilistic data structure that serves as a frequency table of events

uses only sub-linear space, but can over-count events due to hash collisions

hash functions are used to map events to frequencies

We can use hash functions , increase counter matrix accordingly and estimate each

element frequency as

 hash_1(elem1) % w = 2 --> [] [] [+1] [] [] [] [] d=3, w=7
insert(elem1) -> hash_2(elem1) % w = 5 --> [] [] [] [] [] [+1] []
 hash_d(elem1) % w = 3 --> [] [] [] [+1] [] [] []

 hash_1(elem2) % w = 1 --> [] [+1] [1] [] [] [] []
insert(elem2) -> hash_2(elem2) % w = 6 --> [] [] [] [] [] [1] [+1]
 hash_d(elem2) % w = 3 --> [] [] [] [1+1] [] [] []

 hash_1(elem1) % w = 2 --> [] [1] [1+1] [] [] [] []
insert(elem1) -> hash_2(elem1) % w = 5 --> [] [] [] [] [] [1+1] [1]
 hash_d(elem1) % w = 3 --> [] [] [] [2+1] [] [] []

count(elem1) = min(2,3,2) = 2

d : Universe → {1, . . ,w}hi d × w

min {C[1][((elem)], . . . , C[d][(elem)]}h1 hd

Practical Distributed Systems, 2024 | 37 / 45

Bloom filters and sketches (3)

HyperLogLog - probabilistic algorithm for approximating the number of distinct elements in a multiset (i.e. count-distinct

problem),

uses sub-linear memory, at the cost of obtaining only an approximation of the cardinality

The basic idea is to hash elements and use the observation that we can estimate cardinality of a multiset of uniformly

distributed random numbers by calculating maximum number of leading zeros in a binary representation of each number in

the set.

imagine a perfect hashing of a multiset of size 11 containing 8 distinct elements:

elem1 -> hash(elem1) -> . . . 0 0 0 # 3 leading zeros => P(3 zeros) = 1 / 2^3 = 1 / 8
elem2 -> hash(elem2) -> . . . 0 0 1
elem3 -> hash(elem3) -> . . . 0 1 0
elem4 -> hash(elem4) -> . . . 0 1 1
elem5 -> hash(elem5) -> . . . 1 0 0
elem6 -> hash(elem6) -> . . . 1 0 1
elem7 -> hash(elem7) -> . . . 1 1 0
elem8 -> hash(elem8) -> . . . 1 1 1
elem2 -> hash(elem2) -> . . . 0 0 1
elem8 -> hash(elem8) -> . . . 1 1 1
elem2 -> hash(elem2) -> . . . 0 0 1

Practical Distributed Systems, 2024 | 38 / 45

Effective serialization and file formats (1)

If data elements we process have at least some basic structure we can store the elements either in columnar format or row

format.

Row format:

{ name: Jack, age: 23, city: Warsaw }
{ name: Jill, age: 22, city: NULL }
{ name: Bill, age: 21, city: Berlin }
{ name: John, age: 24, city: Berlin }

Columnar format:

{ name: [Jack, Jill, Bill, John] }
{ age: [23, 22, 21, 24] }
{ city: [Warsaw, NULL, Berlin, Berlin] }

Practical Distributed Systems, 2024 | 39 / 45

Effective serialization and file formats (2)

Columnar format is useful

when we process only subset of columns

we don't have to read the whole file, nor deserialize entire objects

especially when we have a very selective predicate

e.g. dataset.filter(user => user.firstName == 'Gościsław').map(...)

this is common case for query-like workloads

because it makes compression easier (similar values are close to each other)

and allows for vectorization and efficient processing (e.g. processing numbers using AVX instructions)

Examples: Parquet, Apache Arrow/Feather

Practical Distributed Systems, 2024 | 40 / 45

Effective serialization and file formats (3)

Row format is useful

when we process all fields/columns sequentially

in columnar format, accessing columns would

require disk accesses

easier to serialize (no need to buffer multiple rows)

Examples: Avro, CSV, Kryo

Row-Columnar format:

we can group rows, and for each group use columnar

format

Examples: Apache ORC (Optimized Row Columnar)

n

n

source: https://cwiki.apache.org/confluence/display/hive/languagemanual+orc:
Practical Distributed Systems, 2024 | 41 / 45

https://cwiki.apache.org/confluence/display/hive/languagemanual+orc

Effective serialization and file formats (4)

Space-efficient and/or fast serialization is very important.

for data serialized on disk we might prefer space-efficient serialization, e.g.

compression

variable length zig-zag integer encoding

encoding enums as bytes, enum sets as bit sets

for data serialized to be transferred over network we might prefer fast serialization, e.g.

serializing integers in native byte order

keeping padding bytes so structures can be memory mapped

Practical Distributed Systems, 2024 | 42 / 45

Map-side/Broadcast joins

users // large collection
 .join(purchases) // smaller collection
 .keyBy(user => user.id)
 .map({ case (user, order) => (user.email, oder.orderedProducts) })

The standard way to perform this join is to use slow sort- of hash-based shuffle join.

But we can also broadcast smaller collection to all workers and perform simple map task.

val purchaseMap : Broadcast[HashMap[UserId, List[Product]]] = spark.broadcast(purchases.collect().asMap)
users.map(user => (user.email, purchaseMap.get(user.id, List.empty)))

Practical Distributed Systems, 2024 | 43 / 45

Vertical scaling

If we are able reduce amount of processed data or transform our problem into set of independent tasks, we can consider

vertical scaling.

For example, performing computation using one or few machines with 4TB RAM and 256 CPU threads and fast NVMe SDD RAID-

0 disk array can reduce total computation time drastically.

When we perform computations in a single address space on a single machine:

we don't need to serialize data, send it over network nor write to disk

we can vectorize our operations and use native implementations

we can use efficient data structures and algorithms

we can use CPU and OS caches effectively

we can reduce various overheads related to distributed computing (e.g. no need to use distributed task scheduler)

Practical Distributed Systems, 2024 | 44 / 45

Summary

We have discussed following topics:

What is and when we need batch processing

Batch processing using Apache Spark

Useful techniques in batch processing

Practical Distributed Systems, 2024 | 45 / 45

