
Infrastructure for Data Analytics and Machine Learning

Part 1 - Distributed Filesystems

Paweł Wiejacha
RTB House

Practical Distributed Systems, 2024 | 1 / 62

Plan for this lecture
Filesystem, Distributed Filesystem, Object Storage

what they are?

and why we need them?

What can we expect from Distributed Storage?

How do Distributed Storage work?

Practical Distributed Systems, 2024 | 2 / 62

File system
File system - a method and data structure used to control how data is stored and

retrieved.

Digital file systems are named and modeled after paper-based filing systems (e.g.

file, directory, folder).

Separating data into pieces (files), naming them, and organizing files into

directories simplifies data storage and retrival

Without such separation there would be just unorganized chunks of data written

on a storage medium

The file system is responsible for:

organizing files and directories

mapping file parts to physical storage blocks

keeping file and directory metadata (e.g. creation date, owner)

image: rrafson, CC BY-SA 3.0, via Wikimedia Commons

Practical Distributed Systems, 2024 | 3 / 62

Distributed file system
Distributed file system - a file system where data is stored across multiple networked computers which communicate and

coordinate their actions by passing messages.

Just like ordinary file system has to map files to disk sectors, distributed file system has to:

map files to disk sectors stored on different nodes

but also handle adding and removing machines to a system, handle network partitioning, etc.

Practical Distributed Systems, 2024 | 4 / 62

Why we need a distributed storage?

Practical Distributed Systems, 2024 | 5 / 62

Memory hierarchy

ComputerMemoryHierarchy.png: User:Danlash at en.wikipedia.org, Public domain, via Wikimedia Commons

Practical Distributed Systems, 2024 | 6 / 62

Memory hierarchy in 2022

Storage
medium

Max. capacity per
node

Reading / Writing
speed

Seek time / random
IOPS

Price per
TB

Magnetic tape 20 TB
read: 400 MB/s

write: 400 MB/s 10-100 s drive + $13

SAS/SATA HDD 20 TB
read: 200 MB/s

write: 269 MB/s
4.15 ms

(~250 IOPS) $22

NVMe SSD 30 TB read: 7 000 MB/s
write: 3 600 MB/s

0.001 ms (1e-6 s)
read: 930 000 IOPS
write: 190 000 IOPS

$125

DRAM 4 TB 190 000 MB/s 68-100ns (6.8e-8 s) $7 500

HBM3 0.64 TB 600 000 MB/s 107-130ns (1e-7 s) $9 000

L3 Cache
(SRAM) 0.0002 TB ~1 000 000 MB/s ~12ns (1.2e-8 s) $7 000 000

Practical Distributed Systems, 2024 | 7 / 62

Memory hierarchy in 2024

Storage
medium

Max. capacity per
node

Reading / Writing
speed

Seek time / random
IOPS

Price per
TB

Magnetic tape 20 TB
read: 400 MB/s

write: 400 MB/s 10-100 s drive + $13

SAS/SATA HDD 30 TB read: 200 MB/s
write: 269 MB/s

4.15 ms
(~250 IOPS) $22

NVMe SSD 30 TB read: 12 400 MB/s
write: 11 800 MB/s

0.001 ms (1e-6 s)
read: 1 500 000 IOPS
write: 1 500 000 IOPS

$125

DRAM 12 TB 285 000 MB/s 68-100ns (6.8e-8 s) $10 000

HBM3 1.28 TB 600 000 MB/s 107-130ns (1e-7 s) $9 000

L3 Cache
(SRAM) 0.0005 TB ~1 000 000 MB/s ~12ns (1.2e-8 s) $7 000 000

Practical Distributed Systems, 2024 | 8 / 62

Do we need a distributed storage?
We know what Distributed File Systems are, but do we really need them?

and if so, when?

Computers became parallel and very powerful, there are technological advancements in the storage field

maybe we can buy an expensive computer, big and fast disks and use a simple non-distributed filesystem?

Practical Distributed Systems, 2024 | 9 / 62

Problem: non-distributed 10 PB storage
Imagine a "BigData" scenario where:

we store 10 PB of data

and perform multiple batch tasks that read only a part (i.e. 1 PB) of stored data

10 PB of data is not that much, e.g.:

1.5e9 smartphone photos (~4 photos of every product available on Amazon)

or 1080p movies uploaded to YouTube over 125-250 days

or bid-logs uploaded to RTB House during 9 hours

Let's try to design and select hardware for a non-distributed storage for this scenario.

Is it possible?

Practical Distributed Systems, 2024 | 10 / 62

Hardware limits and bottlenecks (2022)
Number of processors in a single server

2 CPUs (2x 48 CPU cores)

Expansion bus limits

128-160 PCIe gen4 lanes

~2GB/s per PCIe gen4 lane

Network adapters

200 GbE (~25 GB/s)

latency: 1.01 microseconds

price ~$1600 per two port NIC

Practical Distributed Systems, 2024 | 11 / 62

Storage failure rates
Annualized failure rate (AFR) - estimated probability that a component will fail during a full year of use.

Mean Time Between Failures (MTBF) - , where is the failure rate.

Both are population statistic estimated on a sample of given hardware components

Storage medium Real AFR

Magnetic tape [1] 3.44%

SAS/SATA HDD 0.80% - 1.10%

NVMe SSD 0.78% - 1.22%

DRAM (Reg. ECC) 0.07 - 0.11%

1
λ

λ

AFR = 1 − e−8766/MTBF

[1] assuming unrealistic 100% duty cycle

Practical Distributed Systems, 2024 | 12 / 62

Failures in real world
disk level: assuming 1.22% AFR, given a system with 1450 disks, we can expect a disk failure every 3 weeks

node level: power supply unit failures, motherboard failures

multi-node level: network switch failures, a rack issues

data-center level: maybe not earthquakes, but DNS/BGP problems

human errors

With failures so common, they cannot degrade storage system performance - they need to be transparent to users.

Practical Distributed Systems, 2024 | 13 / 62

Hardware setup for a non-distributed storage (1)

Let's try to select hardware for a imaginary non-distributed storage (10 PB of stored data, 1 PB batch task)

Practical Distributed Systems, 2024 | 14 / 62

Hardware setup for a non-distributed storage (1)

Let's try to select hardware for a imaginary non-distributed storage (10 PB of stored data, 1 PB batch task)

let's get back to our large non-distributed storage problem

reading 1 PB using a single HDD: 1 PB / 200 MB/s = 62 days - too long

Practical Distributed Systems, 2024 | 14 / 62

Hardware setup for a non-distributed storage (1)

Let's try to select hardware for a imaginary non-distributed storage (10 PB of stored data, 1 PB batch task)

let's get back to our large non-distributed storage problem

reading 1 PB using a single HDD: 1 PB / 200 MB/s = 62 days - too long

another reason to use more disks is storage space:

10 PB / 30 TB disks = 341 disks

we want to handle simultaneous failure of 2 disks: 341 + 25% = 426 disks

we want to have at least 20% of free space: 426 + 25% = 532 disks

our system/company is expecting to grow: 532 + 15% = 600+ disks

Practical Distributed Systems, 2024 | 14 / 62

Hardware setup for a non-distributed storage (1)

Let's try to select hardware for a imaginary non-distributed storage (10 PB of stored data, 1 PB batch task)

let's get back to our large non-distributed storage problem

reading 1 PB using a single HDD: 1 PB / 200 MB/s = 62 days - too long

another reason to use more disks is storage space:

10 PB / 30 TB disks = 341 disks

we want to handle simultaneous failure of 2 disks: 341 + 25% = 426 disks

we want to have at least 20% of free space: 426 + 25% = 532 disks

our system/company is expecting to grow: 532 + 15% = 600+ disks

reading 1 PB using 600 HDDs: 1 PB / 600 / 200 MB/s = 2.5 hours - acceptable

Practical Distributed Systems, 2024 | 14 / 62

Hardware setup for a non-distributed storage (2)

Let's try to select hardware for a imaginary non-distributed storage (10 PB of stored data, 1 PB batch task)

600 HDDs is too many for a single machine

slots for disks - max 72 disks per pachine (usually 12-48)

600 HDDs: 420 kg, 12 meters high stack or 90 meters long chain

Practical Distributed Systems, 2024 | 15 / 62

Hardware setup for a non-distributed storage (3)

Let's try to select hardware for a imaginary non-distributed storage (10 PB of stored data, 1 PB batch task)

600 disks * 200 MiB/s = 117 GiB/s - slightly too much for a single machine:

59 PCIe lanes just to read data from disks

copy to memory (12 cores needed - for a simple memcpy())

decrypt, compute checksums (46 cores needed for decryption)

read from memory (another 12 cores)

compute or send over network

sending over network requires 64 PCIe lanes and 5 network adapters

Linux kernel would have a problem to handle that many network packets

Practical Distributed Systems, 2024 | 16 / 62

Hardware setup for a non-distributed storage (4)

Let's try to select hardware for a imaginary non-distributed storage (10 PB of stored data, 1 PB batch task)

Fault tolerance and reliability:

having spare PSU, motherboard, CPUs, RAM modules is a good idea

but it's not possible to achieve high availability this way

Evolution of systems:

In real world, it's likely you are scaling up an existing system (e.g. hardware bought 2 years ago), e.g.:

you have lots of 15TB disks instead of 30 TB ones

and some PCIe gen3 motherboards instead of new PCIe gen4

Advances in modern hardware allow to create truly high performant storage systems.

But in many cases we still need distributed storage

Practical Distributed Systems, 2024 | 17 / 62

Distributed storage interfaces for batch processing

Practical Distributed Systems, 2024 | 18 / 62

Interfaces for batch processing

Block storage

Block-level storage - storage where interface emulates behaviour of a traditional block device (e.g. HDD).

Data is organized as fixed-size blocks which are identified by an arbitrary identifier which can be used to store and retrieve

given block. There are no files, directories, no structure - just blocks.

Examples:

non-cloud: Ceph RADOS Block Device

cloud: Amazon EBS, Google Cloud Persistent Disks

Verdict: Too low level to for batch processing - we need higher level of abstraction.

Practical Distributed Systems, 2024 | 19 / 62

Interfaces for batch processing

POSIX file system interface

Portable Operating System Interface (POSIX) - a family of standards specified in the 1988 for maintaining compatibility

between (UNIX-like) operating systems.

There is a section of the standard that defines the semantics of the POSIX-compatible file system, e.g.:

allows hierarchical file names and resolution (e.g. /dir/dir/file)

strong consistency, atomic writes, atomic renames, deleting open files

implement certain operations, like:

random access reads/writes (pread(), pwrite())

access control (chown, chmod, etc.)

symlinks, hardlinks

ftruncate(), fsync(), fcntl(), mmap(), fadvise(), fallocate()

Practical Distributed Systems, 2024 | 20 / 62

Interfaces for batch processing

POSIX file system interface

Examples[1]:

local filesystems: XFS, ext4, Btrfs, ZFS, ...

distributed filesystems: CephFS, GlusterFS, MooseFS/LizardFS, Lustre, JuiceFS

Verdict:

too complex - implementing a POSIX-compliant distributed filesystem is a challenge

not all features nor consistency guarantees are needed for batch processing

[1] - with various level of POSIX compliance

Practical Distributed Systems, 2024 | 21 / 62

Interfaces for batch processing

Object Storage

Object storage, blob storage - storage architecture that manages data as objects that

have user-defined globally unique identifier

contain variable length data

and optionally a metadata attached to them

Usually, the structure is flat (limited number of buckets, objects inside buckets) - there are no nested file nor directories.

Basically, it is a KVS (Key-Value Store) with big "Values" and metadata.

Practical Distributed Systems, 2024 | 22 / 62

Interfaces for batch processing

Object Storage

Limited set of operations, usually:

get_object(object_name) : Data

put_object(object_name, data)

delete_object(object_name)

set_metadata(object_name, metadata)

list_objects(prefix) : List[ObjectName] - since there are no directories, we need to use prefix searches like:

"list all objects with names starting with /folder/sub-folder/" to simulate file directories

Limited functionality:

sometimes only eventual consistency

immutable objects

put_object(object_name, data) creates or overwrites object object_name

no positioned writes, no mmap()

in some cases: append-only writes

sequential reads or limited random reads

Practical Distributed Systems, 2024 | 23 / 62

Interfaces for batch processing

Object Storage

Examples:

Cloud: Amazon S3, Google Cloud Storage, Azure Blob Storage, Cloudflare R2, Backblaze B2

Open Source: Ceph Object Gateway, MinIO, OpenStack Swift, HDFS [1]

Verdict: just right for batch processing

have all operations needed for batch processing

simplified semantic does not limit storage performance

[1] - not a POSIX filesystem, not a object storage

Practical Distributed Systems, 2024 | 24 / 62

Interfaces for batch processing

Object Storage - blobs and record sets

Object storage is a kind of KVS but with "big" values, e.g.

1. binary blobs: images, videos, or recorded sounds

2. files that contain multiple "records" in formats like CSV, JSON, Avro, Parquet

Let's skip the obvious case of batch processing large binary blobs, and focus on the second one.

Storing data as JSON records in files? How about using a database?

Practical Distributed Systems, 2024 | 25 / 62

Interfaces for batch processing

Example scenario: storing and processing data for a huge store

Imagine you own a big e-commerce store that tracks every action user performs on your website (browsing products,

performing purchases, writing a product review, etc.)

And that you want to answer ad-hoc questions like:

What was the price of product ABC 200 days ago?

What how many unexpired promo tokens user XYZ had 183 days ago?

And what exactly was user XYZ's detailed browsing history just before request 9742-234237483-56452-554232 was

received?

What is the distribution of basket values for premium users who have more than two delivery addresses?

Practical Distributed Systems, 2024 | 26 / 62

Interfaces for batch processing

Database vs Object Storage - DB approach

Analyze and design the domain model carefully

Normalize data

Design complex database schema and intricate entity relationships

with hundreds of tables and relations

Create many huge database indices to speed up queries

Optimize and maintain indices to match common queries

Use rigid query language to perform your business logic

Execute queries using really huge joins using huge DB indices

SELECT
 event.time,
 event.type,
 product.name,
 product_prices.price,
 user_segment, ...
FROM
 events JOIN
 products JOIN
 product_prices JOIN
 i18n_product_details JOIN
 users JOIN
 order_requests
 ...

Practical Distributed Systems, 2024 | 27 / 62

Interfaces for batch processing

Database vs Object Storage - denormalization

Practical Distributed Systems, 2024 | 28 / 62

Interfaces for batch processing

Database vs Object Storage - filesystem approach

Sometimes it's better to store data records as they are:

without restructuring, normalization, deduplication - e.g. with deeply nested, repeated and redundant fields

without indexing

using very simple but flexible schema

just roughly partition them (e.g. by event type and creation date) while writing

and process them in a massively parallel manner when needed

/warehouse/products/...
/warehouse/user-reviews/...
/warehouse/user-reviews/2022-05-02/reviews-1652658665521_73_QPECDbzZXa.json.snappy
/warehouse/user-reviews/2022-05-02/reviews-1652658665523_32_fle34scyaV.json.snappy
/warehouse/user-reviews/...
/warehouse/browsing_events/...
/warehouse/browsing_events/2022-05-02/...
/warehouse/browsing_events/2022-05-03/...
/warehouse/browsing_events/2022-05-04/region=us/...
/warehouse/browsing_events/2022-05-04/region=eu/log-1652658664132_40_hXMzbDepoC.json.snappy
/warehouse/browsing_events/2022-05-04/region=eu/log-1652658665521_70_aXZzbDCEPQ.json.snappy
/warehouse/browsing_events/2022-05-04/region=eu/log-1652658278519_13_xiTNJreBBT.json.snappy
/warehouse/browsing_events/2022-05-04/region=eu/...
/warehouse/subscriptions/...
/warehouse/purchases/...

Practical Distributed Systems, 2024 | 29 / 62

Interfaces for batch processing

Database vs Object Storage - why use the filesystem approach?

because of performance reasons

creating and maintaining huge indices is a real issue

many DB entities - lots of joins, lots of random I/O

as opposed to reading data in a massively parallel and sequential manner

the world, your company, your platform and your data will evolve

maintaining database schema and existing queries would be a nightmare

sometimes you cannot build an index, because you cannot predict the future, e.g.

what queries analytic team will need to perform next quarter?

what algorithms Machine Learning team will create?

sometimes it better to store unstructured data (e.g. raw requests in a JSON format)

it might be easier than reaching consensus about taxonomy, schema, shared indices, priorities

Practical Distributed Systems, 2024 | 30 / 62

Interfaces for batch processing

Database vs Object Storage - data locality

Sometimes the easiest or fastest way is to processes unstructured data sequentially

this processing might require a lot of computing power

and performing computations close to data might be a desired property

property that might not be possible to achieve when a standard database is used

Practical Distributed Systems, 2024 | 31 / 62

Distributed storage - features and requirements

Practical Distributed Systems, 2024 | 32 / 62

Distributed storage - basic requirements
What are our basic requirements for a distributed storage?

storing data and providing reasonable interface

having scalable storage capacity

having scalable data access throughput

i.e. increasing number nodes/disks increases total bandwidth/IOPS

being resilient to hardware failures

both temporary (e.g. HA) and persistent (e.g. broken disks) failures

Practical Distributed Systems, 2024 | 33 / 62

Distributed storage - non-basic requirements
What else can we expect from a distributed storage used for batch processing?

Encryption at rest

Metadata

Object versioning

Constant-time file concatenation

Snapshots

Compression

Atomic rename or Compare-and-Set

Lifecycle and retention policies

Practical Distributed Systems, 2024 | 34 / 62

Distributed storage

building blocks and common design patterns

Practical Distributed Systems, 2024 | 35 / 62

Distributed storage - building blocks

Checksums

Computing checksums (error detecting codes) is the absolute minimum distributed storage should do.

the simplest way is parity check (split data into -bit words and xor them)

CRC (cyclic redundancy check)

using cryptographic hash function that uses dedicated CPU instructions (e.g. SHA instruction set)

import zlib
zlib.crc32(b"very-long-piece-of-data-abcdefgh") # 2142146772
zlib.crc32(b"very-long-piece-of-data-a6cdefgh") # 2822004080
 ^---------------
zlib.crc32(b"very-long-piece-of-ERRORabcdefgh") # 1649843363

n

Practical Distributed Systems, 2024 | 36 / 62

Distributed storage - building blocks

Resiliency - replication

Replication is the simplest way to achieve storage that is resilient to disk or node failures.

Basically, to handle disk failures, instead of writing each object (file or block) once, we need to write it times on

different disks (and different nodes if we want to handle node failures).

Pros:

the simplest way to achieve resiliency

can speed up reading process by reading from different disks

if the same file is read simultaneously by multiple readers

Cons:

you need to buy times more disks

n − 1 n n

n

Practical Distributed Systems, 2024 | 37 / 62

Distributed storage - building blocks

Resiliency - erasure coding

[optimal] erasure code is a forward error correction:

that transforms a message of symbols into a message with symbols (original and redundant)

so that the original message can be recovered from any -symbol subset of the symbol message

the "symbol" can be any number of bits/bytes (processor word, 512 byte sector, 64 KB block)

we are assuming "erasure" (disappearing) of symbols instead of "error" (corruption) of symbols

that's why checksums are so important

n m = n + r n r

n m

Practical Distributed Systems, 2024 | 38 / 62

Distributed storage - building blocks

Resiliency - erasure coding -

the simplest erasure code is xor/parity code ()

n = 3, m = 4

input: 123, 561, 913
parity: 123 ^ 561 ^ 913 == 475

input[0] is missing:
 ??? 561 913
 (475) ^ 561 ^ 913 # == 123 (recovered 1st chunk)

input[1] is missing:
 123 ^ ??? ^ 913
 123 ^ (475) ^ 913 # == 561 (recovered 2nd chunk)

input[2] is missing:
 123 ^ 561 ^ ???
 123 ^ 561 ^ (475) # == 913 (recovered 3rd chunk)

r = 1

r = 1

Practical Distributed Systems, 2024 | 39 / 62

Distributed storage - building blocks

Resiliency - erasure coding -

for general case (), one of methods is polynomial oversampling

you need at least points to determine -degree polynomial

coefficients [over some finite field]

so you can:

use original message symbols as polynomial coefficients

then generate samples and use them as a

erasure-coded message

e.g. for the input message [5, 3], -we have

output 2+2 message:

[5, 3, 11, 14]

Reed-Solomon EC - polynomial oversampling in

r > 1

r > 1

n + 1 n

p(x)

{ p() : i ∈ 1..m }xi

p(x) = 5 + 3x

5 = p() ⟹ = 0x0 x0

3 = p() ⟹ 3 − 5 = 3 ⟹ = −2/3x1 x1 x1

⟨p(), p(), p(2), p(3)⟩x0 x1

GF()2k

Practical Distributed Systems, 2024 | 40 / 62

Distributed storage - building blocks

Resiliency - example comparison

Input: 2000 KiB file, block size = 1000 KiB

Replication (3x):

split file into 2 blocks: and , then for each block

write the same block 3 times using 3 different disks

8+2 erasure coding:

split file into 2 blocks: and , then for each block

split each block into 8 chunks (125 KiB each):

compute parity chunks:

,

write each chunk on a different disk

stored data: [0123456789abcdefghijklmnopqrstuw]

 block_1 block_2
 replica 1: [0123456789abcdef] [ghijklmnopqrstuw]
 replica 2: [0123456789abcdef] [ghijklmnopqrstuw]
 replica 3: [0123456789abcdef] [ghijklmnopqrstuw]

b1 b2

 block_1 block_2
 original chunk 1: [01] [gh]
 original chunk 2: [23] [ij]
 original chunk 3: [45] [kl]
 original chunk 4: [67] [mn]
 original chunk 5: [89] [op]
 original chunk 6: [ab] [qr]
 original chunk 7: [cd] [st]
 original chunk 8: [ef] [uw]
 redundant chunk 1: [UV] [PQ]
 redundant chunk 2: [XY] [RS]

b1 b2

, . . . ,c1 c8

= parit (, . . . ,)c9 yα c1 c8

= parit (, . . . ,)c10 yβ c1 c8

Practical Distributed Systems, 2024 | 41 / 62

Distributed storage - building blocks

Resiliency - erasure coding (3)

the more chunks the smaller storage overhead (e.g. 1000+2 vs 10+2)

but need multiple disk accesses (e.g. 1000 seeks) to read a single block

and you need system with at least 1002 different disks

computing redundant chunks requires more computing power than a simple copy done by a replication

you need more disks to get the same resiliency level, e.g.:

3x replication - we need only 3 disks

8+2 EC - we need 10 disks (however we have 8 times more usable space)

Erasure coding is a much more complex solution, e.g.

in case of failure of a disk containing original chunk, you need to reconstruct the block on the fly

Practical Distributed Systems, 2024 | 42 / 62

Distributed storage - building blocks

Sharding

Sharding - partitioning data horizontally (e.g. by rows not columns) so that each data shard is stored or handled by a different

instance, process or disk.

Examples:

storing all blocks with hash(block_uuid) mod num_machines == i on machine

storing all metadata with hash(object_name) mod num_metadata_servers == i on server

This way we can distribute load and responsibility evenly and scale our system.

file_names = ['file0', 'file1', 'file2', 'file3', 'file4', 'file5', 'file6', 'file7', 'file8', 'file9']

>>> [hash(file_name) % 3 for file_name in file_names]
[0, 1, 2, 1, 0, 2, 0, 2, 0, 0]

server0: 'file0', 'file4', 'file6', 'file8', 'file9'
server1: 'file1', 'file3'
server3: 'file2', 'file5', 'file7'

i

i

Practical Distributed Systems, 2024 | 43 / 62

Distributed storage - building blocks

Tiering and caching

Tiering - arranging something in tiers (layers)

For example:

Keeping frequently used data (filesystem hierarchy, indexes, file metadata) in RAM to reduce latency

Keeping hot data (recently read files, blocks prefetched by the read-ahead mechanism) in RAM or SSD

Keeping cold and ordinary data on slower medium (e.g. HDD)

Practical Distributed Systems, 2024 | 44 / 62

Common patterns in Distributed Storage design

Data organization

storing data on multiple machines (data nodes)

splitting files into blocks with limited size (e.g. up to 128 MB)

simplifies things like reconstruction, balancing, out of space handling

allows to parallelize data transfers

placement awareness (same disk, same node, same rack)

replication or erasure coding

data transfers should be done directly to/from a data node

the simplest way to store blocks is to use a normal filesystem (XFS, EXT4)

examples: HDFS, MinIO, OpenStack Swift,

this way we can use fsck.ext4, rsync, ls, cp, software RAID, etc.

if we need to squeeze more performance we can create storage layer by ourselves

example: BlueStore in CephFS

Practical Distributed Systems, 2024 | 45 / 62

Common patterns in Distributed Storage design

Data organization

source: https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Practical Distributed Systems, 2024 | 46 / 62

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Common patterns in Distributed Storage design

Metadata organization (1)

We stored data blocks in a resilient way on data nodes.

During read request, client is going to connect directly to data nodes to fetch blocks

But which data node client should connect?

We need some place to store metadata

(e.g. file size, list of file's blocks and their locations, index of stored files)

We can use deterministic algorithms and placement policies, sharding,

broadcast messages, etc. to reduce size of metadata

e.g. Ceph uses CRUSH, a scalable pseudorandom data distribution

function that efficiently maps data objects to storage devices

without relying on a central directory

And if we want to provide reasonable consistency guarantees we need

to coordinate (e.g. serialize) all metadata operations

source: https://ceph.com/assets/pdfs/weil-crush-sc06.pdf

Practical Distributed Systems, 2024 | 47 / 62

https://ceph.com/assets/pdfs/weil-crush-sc06.pdf

Common patterns in Distributed Storage design

Metadata organization (2)

source: https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Practical Distributed Systems, 2024 | 48 / 62

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Common patterns in Distributed Storage design

Metadata organization (3)

the simplest way is to keep all metadata on a single server

powerful enough to handle all metadata operations and keep hot data in RAM

forcing every metadata request to go through this server to guarantee consistency

next level is to use active/standby configuration, e.g.

writing metadata/log on a secure storage before confirming

waiting for replica confirmation storage before confirming to client

next level: multiple metadata servers that use distributed consensus algorithms (Raft, Paxos)

don't forget about sharding

how to store metadata?

filesystem

some basic local KVS/DB (e.g. LevelDB, RocksDB)

custom database

Practical Distributed Systems, 2024 | 49 / 62

Common patterns in Distributed Storage design

Rebalancing

Storage system should handle:

extension - adding more disks and nodes to extend storage and throughput

retiring (decomissioning) - marking old or partially broken nodes for removal or repair

Those actions can result in unbalanced storage cluster state

e.g. 200 disks are 95% full and 50 new disks are empty

Unbalanced system should automatically start a rebalancing process that moves data blocks to new places.

Ideally this process should not degrade user reads/writes.

Practical Distributed Systems, 2024 | 50 / 62

Common patterns in Distributed Storage design

Reconstruction

In case of (multiple) node or disk failures number of original/redundant chunks falls

we either lost some data (if we lost too many chunks)

there are less chunks than required to handle next failure

Storage system can reconstruct blocks on-the-fly during read operations, but it should perform reconstruction process to

rebuild missing chunks permanently.

especially for files that are not going to be read in the near future

Implementing it correctly can be a little tricky:

we should not degrade user experience

but we also cannot delay/throttle reconstruction because another failure can happen when we are not ready for it

we also should handle temporary "failures" (e.g. failed switch, machine reboot) gracefully

Practical Distributed Systems, 2024 | 51 / 62

Common patterns in Distributed Storage design

Scrubbing

Scrubbing - process of reading stored data in the background in order to detect errors.

it can detect hardware errors (broken sectors, broken drives) and sometimes software errors (incorrect programs)

read data can be compared to:

other replicas

reconstructed data from EC

stored checksum

assuming some redundant information is present, data can be reconstructed

It's better to reconstruct data when it's still possible than have a storage system with hidden possibly unrecoverable corrupted

data.

Practical Distributed Systems, 2024 | 52 / 62

Distributed storage - non-basic requirements

Practical Distributed Systems, 2024 | 53 / 62

Distributed storage - non-basic requirements

Encryption at rest

If someone breaks into a data center and steals our servers/disks he should not be able to read our data

usually we can encrypt drives and store keys in memory, and store the master key in some secure location (TPM, TEE)

Encryption at rest this might be a legal requirement.

Practical Distributed Systems, 2024 | 54 / 62

Distributed storage - non-basic requirements

Metadata

sometimes you don't want to read whole file just to get some basic information

e.g. gdpr_cleanup_id, schema_version

and you cannot store it in the object name

sometimes you want to attach or change metadata long after file was created

having those metadata indexed is a nice feature

easier than managing the metadata and consistency in a separate database

Practical Distributed Systems, 2024 | 55 / 62

Distributed storage - non-basic requirements

Object versioning

the idea is that when you overwrite an object, storage keeps previous and the current version of it

and when you delete it keeps old version and a deletion maker

this is not something you cannot achieve with sensible naming policy

but sometimes it simplifies things and is a nice feature

especially if paired with lifecycle policy

Practical Distributed Systems, 2024 | 56 / 62

Distributed storage - non-basic requirements

Constant-time file concatenation

Needed in scenarios when multiple writers create multiple files (e.g. in M/R job) that logically are a single file

and when processing concatenated file is easier than processing hundreds of files)

Also appending header/footer without the need of rewriting source file can be useful

Practical Distributed Systems, 2024 | 57 / 62

Distributed storage - non-basic requirements

Snapshots

This is rather file system not object storage feature

With snapshots, we can make a instantaneous read-only point-in-time snapshot of filesystem subtree

and later modify the source subtree without changing the snapshot

We can take multiple snapshots of a given directory

This is quite simple operation in a filesystem where you cannot modify files

HDFS supports filesystem subtree snapshots.

Practical Distributed Systems, 2024 | 58 / 62

Distributed storage - non-basic requirements

Compression

Compression not only increases storage capacity

It also reduces disk utilization

and network bandwidth (if we decompress on client)

If we use compression algorithms that focus on compression/decompression speeds (lz4, zstd, snappy) we can also

increase download and uploads speeds

Manual compression - compressing data by ourselves when uploading and decompress when downloading

Transparent compression - with compression implemented by the file system we reduce amount of code/logic to write and

maintain

Practical Distributed Systems, 2024 | 59 / 62

Distributed storage - non-basic requirements

Atomic rename or Compare-and-Set

With Compare-and-Set operation or at least atomic rename, we can implement few useful algorithms and create complex

systems on top of a object storage (i.e. without using additional database, distributed locks, etc.)

returns current object data and object sequence number (monotonic version number)
def read_object(key: Key) -> (Value, ObjectSeqNo): ...

atomically writes object *only* if current object's sequence number is expected_seq_no
def compare_and_set(key: Key, new_value: Value, expected_seq_no: Our) -> Success | Failure: ...

def deposit_money(amount):
 current_balance, seq_no = read_object("account_123")
 new_balance = current_balance + amount
 result = compare_and_set("account_123", new_balance, seq_no)
 if result != Success:
 deposit_money(amount) # repeat

Unfortunately, not many object storages implement this.

HDFS has atomic rename

GCS has no rename operation, no CAS

S3 implemented strong-consistency for read-after-write (for a single PUT/DELETE) 4 years ago

Practical Distributed Systems, 2024 | 60 / 62

Distributed storage - non-basic requirements

Lifecycle and retention policies

Sometimes storage system can store store object in different ways:

with more or less resiliency (e.g. handling only one not three disk failures)

or on a cheaper medium (e.g. tapes) where object retrieval is delayed

It's very convenient if storage system allows to set retention policies, e.g.:

delete objects older than X days

move objects older than X days to a cold storage

Practical Distributed Systems, 2024 | 61 / 62

Summary
We have discused following topics:

What is a Distributed Storage

Why batch processing may require Distributed Storage

What interface for Distributed Storage is best suited for batch processing

What can we expect from a Distributed Storage

How (in general) Distributed Stores work

Practical Distributed Systems, 2024 | 62 / 62

