
08.04.2024

Stream processing
 part III

(real-time data architecture)

RTB HOUSE
Bartosz Łoś

Goal

What will this
lecture be about?

• show an example of real-time data architecture at

RTB House (different approaches and use cases,

design decisions)

• dig deep into data processing frameworks (Apache

Storm, Kafka Streams, Kafka Workers etc.)

• takes part in auctions, purchases

and emits advertisements in the

RTB model

• processes 10M+ bid requests per

second and generates 500K events

per second (300TB data every day)

Our platform:

The context: RTB platform

Data processing:

• requirements: machine learning,

system monitoring (alerting, ad hoc

debugging) and financial

settlements (reports, budget limits)

• use cases: filtering, synchronizing,

joining, aggregating, storing events

and statistics in Hadoop, GCS,

BigQuery, Postgres or Elasticsearch

The context: RTB platform

?

I will pay
0.01 $

RTB HOUSE

SSP NETWORK

how much will
you pay for this
impression?

Give me
an ad,
please.

I will pay
0.02 $

I will pay
0.05 $

Z

The context: RTB platform
Our platform consists of two types of servlets:

• bidders process bid requests

• adservlets process user requests (tags, impressions, clicks and conversions)

?

USER TAG BID IMPRESSION CLICK CONVERSION

30 days

The context: RTB platform
To be able to buy advertising space effectively, we needed to store

and process data (user info, historical impressions)

We were able to use this data for estimating:

probability of a click
(click-through rate)

conditional probability of a
conversion given that an
impression was clicked

(conversion rate)

conversion value

These estimated values are used for bid pricing:

bid_value = (1-margin) * CTR * CR * CV * rate

 (impression_value)

• at first: end-of-day batch jobs,

single-DC, inconsistent data-flows

• finally: real-time data processing,

delay reduced from 1 day to 15

seconds, multi-DC architecture,

end-to-end exactly-once processing

We have been improving our
solution by many iterations:

Iterations

It was essential to:

• separate data-flow from the core

platform

• provide immutable streams of

events and data synchronization

between DCs

• dig deep into open-source

streaming technologies and if

needed replace them by better,

custom-built components

The 1st iteration:
mutable impressions

{ IMPRESSION:
IMPRESSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…
CLICKS,
CONVERSIONS

}

{ CLICK:
CLICK_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
IMPRESSION_HASH
…

}

{ CONVERSION:
CONVERSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…

}

The 1st iteration: mutable impressions

PLATFORM

ML JOBS

CASSANDRA
UPLOAD

(30 DAYS BACK)

SQL

The 2nd iteration: data-flow

PLATFORM

CAMUS

KAFKA

STATS - COUNTER

HIVE JOINS

SQL

The 3rd iteration:
immutable streams of events

{ IMPRESSION:
IMPRESSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…
CLICKS,
CONVERSIONS

}

{ CLICK:
CLICK_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
IMPRESSION_HASH
…

}

{ CONVERSION:
CONVERSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…

}

The 3rd iteration:
immutable streams of events

{ IMPRESSION:
IMPRESSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…
CLICKS,
CONVERSIONS

}

{ CLICK:
CLICK_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
IMPRESSION_HASH
…
IMPRESSION

}

{ CONVERSION:
CONVERSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…
IMPRESSION,
CLICK

}

The 3rd iteration: immutable streams of events

DC ASIA

DATA - FLOW

DC EUROPE

DC USA

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

USER - EVENTS

STATS - COUNTER

The 4th iteration: multi-dc architecture

USER
EVENTS

MERGER

kafka
client

DATA-FLOW

kafka
streams

STATS-COUN
TER

kafka
streams

merged
events

processed
events

USER
PROFILES

USER
PROFILES

LOADER

kafka
streams

LOADER

kafka
streams

DISPATCHER
2

kafka
streams

DISPATCHER
1

kafka
streams

events-
DC2

events-
for-DC2

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

events-
for-DC1

events-
DC1

events-
DC2

events-
for-DC2

events-
DC1

events-
for-DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

CENTRAL
KAFKA

CENTRAL
KAFKA

DC 1

DC2

CENTRAL DC

The 4th iteration: multi-dc architecture

events-
DC2

MIRROR
-MAKER

MIRROR
-MAKER

events-
DC1

events-
DC2

events-
DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

DC 1

DC2

CENTRAL DC

The 4th iteration: multi-dc architecture

events-
DC2

MIRROR
-MAKER

MIRROR
-MAKER

events-
DC1

events-
DC2

events-
DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

DC 1

DC2

CENTRAL DC

DISPATCHER
1

kafka
streams

events-
for-DC2

The 4th iteration: multi-dc architecture

events-
DC2

MIRROR
-MAKER

MIRROR
-MAKER

events-
DC1

events-
DC2

events-
DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

DC 1

DC2

CENTRAL DC

DISPATCHER
1

kafka
streams

events-
for-DC2

MIRROR
-MAKER

events-
for-DC2

The 4th iteration: multi-dc architecture

events-
DC2

MIRROR
-MAKER

MIRROR
-MAKER

events-
DC1

events-
DC2

events-
DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

DC 1

DC2

CENTRAL DC

DISPATCHER
1

kafka
streams

events-
for-DC2

MIRROR
-MAKER

events-
for-DC2

USER
PROFILES

LOADER

kafka
streams

The 4th iteration: multi-dc architecture

USER
PROFILES

USER
PROFILES

LOADER

kafka
streams

LOADER

kafka
streams

DISPATCHER
2

kafka
streams

DISPATCHER
1

kafka
streams

events-
DC2

events-
for-DC2

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

events-
for-DC1

events-
DC1

events-
DC2

events-
for-DC2

events-
DC1

events-
for-DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

DC 1

DC2

The 4th iteration: multi-dc architecture

USER
PROFILES

USER
PROFILES

LOADER

kafka
streams

LOADER

kafka
streams

DISPATCHER
2

kafka
streams

DISPATCHER
1

kafka
streams

events-
DC2

events-
for-DC2

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

events-
for-DC1

events-
DC1

events-
DC2

events-
for-DC2

events-
DC1

events-
for-DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

DC 1

DC2

MERGER

kafka
client merged

events

CENTRAL
KAFKA

The 4th iteration: multi-dc architecture

USER
PROFILES

USER
PROFILES

LOADER

kafka
streams

LOADER

kafka
streams

DISPATCHER
2

kafka
streams

DISPATCHER
1

kafka
streams

events-
DC2

events-
for-DC2

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

events-
for-DC1

events-
DC1

events-
DC2

events-
for-DC2

events-
DC1

events-
for-DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

DC 1

DC2

USER
EVENTS

MERGER

kafka
client

DATA-FLOW

kafka
streamsmerged

events

CENTRAL
KAFKA

CENTRAL
KAFKA

processed
events

The 4th iteration: multi-dc architecture

USER
EVENTS

MERGER

kafka
client

DATA-FLOW

kafka
streams

STATS-COUN
TER

kafka
streams

merged
events

processed
events

USER
PROFILES

USER
PROFILES

LOADER

kafka
streams

LOADER

kafka
streams

DISPATCHER
2

kafka
streams

DISPATCHER
1

kafka
streams

events-
DC2

events-
for-DC2

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

events-
for-DC1

events-
DC1

events-
DC2

events-
for-DC2

events-
DC1

events-
for-DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

CENTRAL
KAFKA

CENTRAL
KAFKA

DC 1

DC2

CENTRAL DC

The 5th iteration: Kafka Workers

USER
EVENTS

MERGER

kafka
workers

DATA-FLOW

kafka
workers

STATS-COUN
TER

kafka
workers

merged
events

processed
events

USER
PROFILES

USER
PROFILES

LOADER

kafka
workers

LOADER

kafka
workers

DISPATCHER
2

kafka
workers

DISPATCHER
1

kafka
workers

events-
DC2

events-
for-DC2

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

events-
for-DC1

events-
DC1

events-
DC2

events-
for-DC2

events-
DC1

events-
for-DC1

DC KAFKA

DC KAFKA
CENTRAL
KAFKA

CENTRAL
KAFKA

CENTRAL
KAFKA

DC 1

DC2

CENTRAL DC

ELASTIC –
WRITER

kafka
workers

ELASTIC –
WRITER

kafka
workers

ELASTIC –
WRITER

kafka
workers

• event streaming platform (distributed log)

• producer-consumer separation

• fault-tolerance (replication)

• scalability and distribution (topics

partitioning)

• log retention, statelessness

• efficient data consumption

Apache Kafka
Why Kafka:

PRODUCER PRODUCER PRODUCER

BROKER BROKER BROKER Zookeeper

Consumer Consumer

• MapReduce job that incrementally loads

data from Kafka into HDFS

• fetches topics from Zookeeper and latest

offsets from Kafka

• partitions the output based on the

timestamp of each record

• stores offsets in log files in HDFS

Apache Camus
Why Camus: Broker Broker Broker

CamusMap Map Map

Kafka

MapReduce

Apache Avro
Why Apache Avro:

• data serialization framework

• stores data in a compact, efficient binary

format

• schema (JSON) could define rich data

structures using various complex types

• schema is stored with data in one Avro file

(self-describing container files)

• supports schema changes (old schema

could be deserialized by a new program)

Our approach:

• Kafka's messages and HDFS files

• schema registry, historical schemas for Avro

deserialization

• avro-fastserde

(github.com/RTBHOUSE/avro-fastserde)

• real-time computation system

• processes streams of tuples and runs user-defined

topologies with processing nodes:

o spouts emit new tuples

o bolts receive tuples, do processing and generate tuples

(states persist information)

• guarantees that every spout tuple will be fully processed

(fault-tolerance)

• executes spouts and bolts as individual tasks that run in

parallel on multiple machines

Apache Storm
Why Apache Storm:

BOLT BOLT

BOLT

SPOUT

BOLT

SPOUT

• responsible for distributing code around the cluster,

assigning tasks to machines, and monitoring

Apache Storm
Master runs a daemon – Nimbus:

Worker runs a daemon - Supervisor:

• listens for work assigned to its machine and starts

 and stops worker processes

Each worker process is a physical JVM

and executes a subset of all the tasks

for the topology

Nimbus Nimbus Nimbus

Zookeeper Zookeeper Zookeeper

Supervisor Supervisor SupervisorSupervisor

WorkerWorker WorkerWorker

• high-level declarative API

• provides functions, filters, joins, groupings,

and aggregations

• supports stateful, incremental processing on

top of persistence stores

• processes microbatches (transactions) and

supports exactly-once processing

Apache Storm
Trident API

Why Trident:

spout each each group by persistentAggregate TridentState

spout each group by state query
each

each partition
by

join each

partition
by

Bolt

Bolt

Bolt

Bolt

Spout

Spout

Source: storm.apache.org

Use case: stats-counter

key value

ssp1 1994

ssp2 2389

key value

campaign1 732

campaign2 245

campaign3 566

KafkaSpout

KafkaSpout

KafkaSpout

Decode
Function

Decode
Function

Decode
Function

Count
Function

Count
Function

Count
Function

Database
State

Database
State

SQL

ssp_stats campaign_stats

impressions

clicks

conversions

newStream each each merge groupBy aggregate partitionPersist

campaign_stats

ssp_stats

Use case: stats-counter (exactly-once state)

key value last_transaction_id

ssp1 1994 17

ssp2 2389 18

key value last_transaction_id

campaign1 732 18

campaign2 245 17

campaign3 566 18

KafkaSpout

KafkaSpout

KafkaSpout

Decode
Function

Decode
Function

Decode
Function

Count
Function

Count
Function

Count
Function

Database
State

Database
State

SQL

ssp_stats campaign_stats

impressions

clicks

conversions

newStream each each merge groupBy aggregate partitionPersist

campaign_stats

ssp_stats

key <offset1, offset2> transaction_id

impressions <5831, 5917> 19

clicks <623, 680> 19

conversions <423, 442> 19

zookeeper

Use case: stats-counter (parallelism)

SQL

KafkaSpout

KafkaSpout

KafkaSpout

Decode
Function

Count
Function

Decode
Function

Count
Function

Decode
Function

Count
Function

Database
State

Database
State

ParallelismHint = 3 ParallelismHint = 6 ParallelismHint = 3 ParallelismHint = 1

Nimbus

Nimbus

Nimbus

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Work Process

Work Process

Work Process

Work Process

• Java library (based on Kafka producer and

consumer APIs) run as a standard application

• no processing cluster and no external

dependencies

• uses Kafka's parallelism model and group

membership mechanism (scalability and

fault-tolerance)

• does event-at-a-time processing (no batching)

• supports exactly-once processing

Why Kafka Streams:

Source: kafka.apache.org

Kafka Streams

• consumes records from one or more input Kafka topics

(source processors)

• sends records to output Kafka topic (sink processors)

Topology is a graph of stream processors that are

connected by streams:

Source: kafka.apache.org

Kafka Streams: topology

Kafka Streams uses Kafka concepts:

• data record - Kafka message

• stream partition - Kafka topic partition

• keys determine the partitioning

 Kafka Streams: threading model

Source: kafka.apache.org

Use case: data-flow

Consumer

europe events

Decode
Function

Process
Function

Encode
Function

Producer

Consumer

asia events

Decode
Function

Process
Function

Encode
Function

Producer

Consumer

usa events

Decode
Function

Process
Function

Encode
Function

Producer

USER EVENTS

METADATA

SQL

Use case: data-flow (parallelism)

USER EVENTS

METADATA

SQL

input – topic: output – topic:
consumer

consumer

consumer

consumer

task 1

task 2

task 3

task 4

producer

producer

producer

producer

Use case: data-flow (parallelism)

input – topic: output – topic:

USER EVENTS

METADATA

SQL

consumer

consumer

consumer

task 1

task 2

task 3

task 4

producer

producer

producer

thread 1
instance 1

thread 2

thread 3

instance 2

Use case: merger

63 54 50 45 40 39

66 61 57 52 49 47

input – topic A

input – topic B

p 0

p 1

p 2

p 0

p 1

p 2

66 63 61 57 54 52 50 49 47 45 40 39

Output – topic

p 0

p 1

p 2

63 54 50 45 40 39

66 61 57 52 49 47

input – topic A

input – topic B

p 0

p 1

p 2

p 0

p 1

p 2

34 32 30 28 25 23 19 17

p 0

p 1

p 2

38 35

46 44 41 36

partition 0

partition 1 35

partition 2

partition 0

partition 1 36

partition2

Output – topic

Output
Producer

Partition
Queues

Input
Consumer

Partition timestamps

Instance 1

Instance 1

Input-topic A Input-topic B

Output
Producer

Partition
Queues

Input
Consumer

Kafka Workers:
main features

0 1 2 3 4 5 6 7 8

partition-0:

0 1 2 3 4 5 6 7 8

partition-1: Consumer

1 4 5 8

0 1 4 6

0 2 3 6 7

2 3 5 7 8

Worker
Task - 00

Worker
Task - 01

Worker
Task - 10

Worker
Task - 11

subpartition-00:

subpartition-01:

subpartition-10:

subpartition-11:

Why Kafka Workers
(github.com/RTBHOUSE/kafka-workers)

• better threading model with better
resources utilization

o separating processing from
consumption

o higher level of distribution

Kafka Workers:
main features

✔✔✔ ✔partition-0:

✔✔✔✔ ✔partition-1:

Why Kafka Workers
(github.com/RTBHOUSE/kafka-workers)

• asynchronous processing

o processing timeouts

o tighter control of offset commits

To commit

0 1 2 3 4 5

Kafka Workers:
main features

Why Kafka Workers
(github.com/RTBHOUSE/kafka-workers)

• backpressure

Consumer

5 8

4

3 6 7

7

Worker
Task - 00

Worker
Task - 01

Worker
Task - 10

Worker
Task - 11

subpartition-00:

subpartition-01:

subpartition-10:

subpartition-11:

To pause

To resume

Kafka Workers:
main features

Why Kafka Workers
 (github.com/RTBHOUSE/kafka-workers):

• possibility to pause and resume processing for a given partition

• at-least-once semantics

• handling failures

• simplicity

• Kafka Consumer API

• no processing cluster, no external dependencies

• without translating messages to/from its internal data format

• no interprocess communication

• kafka-to-kafka, hdfs, bigquery, elasticsearch connectors

public interface WorkerPartitioner<K, V> {

int subpartition (ConsumerRecord<K, V> consumerRecord) ;

}

Kafka Workers: API

public interface WorkerTask<K, V> {

boolean accept(WorkerRecord<K, V> record);

void process (WorkerRecord,K, V> record, RecordStatus0bserver

observer) :

}
public interface RecordStatus0bserver {

void onSuccess();

void onFailure(Exception exception);

}

Kafka Workers: API

Kafka Workers: threading model

0 1 2 3 4 5 6 7 8

partition-0:

0 1 2 3 4 5 6 7 8

partition-1: Consumer

5 8

4

3 6 7

7

Worker
Task - 00

Worker
Task - 01

Worker
Task - 10

Worker
Task - 11

subpartition-00:

subpartition-01:

subpartition-10:

subpartition-11:

✔✔✔ ✔partition-0:

✔✔✔✔ ✔partition-1:

To commit

0 1 2 3 4 5

WorkerThread-1

WorkerThread-2

WorkerThread-3

To pause

To resume

Instance-1

• platform monitoring

• much more stable

platform

• higher quality of data

processing

• HDFS & BigQuery &

Elasticsearch streaming

• multi-DC architecture

and data synchronization

• high scalability

• better data-flow

monitoring,

deployment &

maintenance

Summary
What we have achieved:

Thank you.

Bartosz Łoś

