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Goal

What will this 
lecture be about?

• show an example of real-time data architecture at 

RTB House (different approaches and use cases, 

design decisions)

• dig deep into data processing frameworks (Apache 

Storm, Kafka Streams, Kafka Workers etc.)



• takes part in auctions, purchases 

and emits advertisements in the 

RTB model

• processes 10M+ bid requests per 

second and generates 500K events 

per second (300TB data every day)

Our platform:

The context: RTB platform

Data processing:

• requirements: machine learning, 

system monitoring (alerting, ad hoc 

debugging) and financial 

settlements (reports, budget limits)

• use cases: filtering, synchronizing, 

joining, aggregating, storing events 

and statistics in Hadoop, GCS, 

BigQuery, Postgres or Elasticsearch



The context: RTB platform

?

I will pay 
0.01 $

RTB HOUSE

SSP NETWORK

how much will
you pay for this 
impression?

Give me 
an ad,
please.

I will pay 
0.02 $

I will pay 
0.05 $



Z

The context: RTB platform
Our platform consists of two types of servlets:

• bidders process bid requests

• adservlets process user requests (tags, impressions, clicks and conversions)

?

USER TAG BID IMPRESSION CLICK CONVERSION

30 days



The context: RTB platform
To be able to buy advertising space effectively, we needed to store 

and process data (user info, historical impressions)

We were able to use this data for estimating:

probability of a click 
(click-through rate) 

conditional probability of a 
conversion given that an 
impression was clicked 

(conversion rate)

conversion value

These estimated values are used for bid pricing:

bid_value = (1-margin) * CTR * CR * CV * rate                             

           (impression_value)



• at first: end-of-day batch jobs, 

single-DC, inconsistent data-flows

• finally: real-time data processing, 

delay reduced from 1 day to 15 

seconds, multi-DC architecture, 

end-to-end exactly-once processing

We have been improving our 
solution by many iterations:

Iterations

It was essential to:

• separate data-flow from the core 

platform

• provide immutable streams of 

events and data synchronization 

between DCs

• dig deep into open-source 

streaming technologies and if 

needed replace them by better, 

custom-built components



The 1st iteration: 
mutable impressions

{ IMPRESSION:
IMPRESSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…
CLICKS,
CONVERSIONS

}

{ CLICK:
CLICK_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
IMPRESSION_HASH
…

}

{ CONVERSION:
CONVERSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…

}



The 1st iteration: mutable impressions

PLATFORM

ML JOBS

CASSANDRA
UPLOAD

(30 DAYS BACK)

SQL



The 2nd iteration: data-flow

PLATFORM

CAMUS

KAFKA

STATS - COUNTER

HIVE JOINS

SQL



The 3rd iteration: 
immutable streams of events

{ IMPRESSION:
IMPRESSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…
CLICKS,
CONVERSIONS

}

{ CLICK:
CLICK_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
IMPRESSION_HASH
…

}

{ CONVERSION:
CONVERSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…

}



The 3rd iteration: 
immutable streams of events

{ IMPRESSION:
IMPRESSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…
CLICKS,
CONVERSIONS

}

{ CLICK:
CLICK_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
IMPRESSION_HASH
…
IMPRESSION

}

{ CONVERSION:
CONVERSION_HASH,
TIME,
COOKIE,
ADVERTISER_ID,
…
IMPRESSION,
CLICK

}



The 3rd iteration: immutable streams of events

DC ASIA

DATA - FLOW

DC EUROPE

DC USA

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

USER - EVENTS

STATS - COUNTER



The 4th iteration: multi-dc architecture
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kafka
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kafka
streams

STATS-COUN
TER

kafka
streams

merged
events

processed
events
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USER
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LOADER

kafka
streams

LOADER

kafka
streams
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kafka
streams

DISPATCHER
1

kafka
streams

events- 
DC2

events- 
for-DC2
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CENTRAL 
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DC2

CENTRAL DC



The 4th iteration: multi-dc architecture
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The 4th iteration: multi-dc architecture
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The 4th iteration: multi-dc architecture
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The 4th iteration: multi-dc architecture
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The 4th iteration: multi-dc architecture
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The 4th iteration: multi-dc architecture

USER
PROFILES

USER
PROFILES

LOADER

kafka
streams

LOADER

kafka
streams

DISPATCHER
2

kafka
streams

DISPATCHER
1

kafka
streams

events- 
DC2

events- 
for-DC2

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

MIRROR
-MAKER

events- 
for-DC1

events- 
DC1

events- 
DC2

events- 
for-DC2

events- 
DC1

events- 
for-DC1

DC KAFKA

DC KAFKA
CENTRAL 
KAFKA

DC 1

DC2

MERGER

kafka
client merged

events

CENTRAL 
KAFKA



The 4th iteration: multi-dc architecture
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The 4th iteration: multi-dc architecture
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The 5th iteration: Kafka Workers
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• event streaming platform (distributed log)

• producer-consumer separation

• fault-tolerance (replication)

• scalability and distribution (topics 

partitioning)

• log retention, statelessness

• efficient data consumption

Apache Kafka
Why Kafka: 

PRODUCER PRODUCER PRODUCER

BROKER BROKER BROKER Zookeeper

Consumer Consumer



• MapReduce job that incrementally loads 

data from Kafka into HDFS

• fetches topics from Zookeeper and latest 

offsets from Kafka

• partitions the output based on the 

timestamp of each record

• stores offsets in log files in HDFS

Apache Camus
Why Camus: Broker Broker Broker

CamusMap Map Map

Kafka

MapReduce



Apache Avro
Why Apache Avro:

• data serialization framework

• stores data in a compact, efficient binary 

format

• schema (JSON) could define rich data 

structures using various complex types

• schema is stored with data in one Avro file 

(self-describing container files)

• supports schema changes (old schema 

could be deserialized by a new program)

Our approach:

• Kafka's messages and HDFS files

• schema registry, historical schemas for Avro 

deserialization

• avro-fastserde 

(github.com/RTBHOUSE/avro-fastserde)



• real-time computation system

• processes streams of tuples and runs user-defined 

topologies with processing nodes:

o spouts emit new tuples

o bolts receive tuples, do processing and generate tuples 

(states persist information)

• guarantees that every spout tuple will be fully processed 

(fault-tolerance)

• executes spouts and bolts as individual tasks that run in 

parallel on multiple machines

Apache Storm
Why Apache Storm:

BOLT BOLT

BOLT

SPOUT

BOLT

SPOUT



• responsible for distributing code around the cluster, 

assigning tasks to machines, and monitoring

Apache Storm
Master runs a daemon – Nimbus:

Worker runs a daemon - Supervisor:

• listens for work assigned to its machine and starts

 and stops worker processes

Each worker process is a physical JVM 

and executes a subset of all the tasks 

for the topology

Nimbus Nimbus Nimbus

Zookeeper Zookeeper Zookeeper

Supervisor Supervisor SupervisorSupervisor

WorkerWorker WorkerWorker



• high-level declarative API

• provides functions, filters, joins, groupings, 

and aggregations

• supports stateful, incremental processing on 

top of persistence stores

• processes microbatches (transactions) and 

supports exactly-once processing

Apache Storm
Trident API

Why Trident:

spout each each group by persistentAggregate TridentState

spout each group by state query
each

each partition
by

join each

partition
by

Bolt

Bolt

Bolt

Bolt

Spout

Spout

Source: storm.apache.org



Use case: stats-counter

key value

ssp1 1994

ssp2 2389

key value

campaign1 732

campaign2 245

campaign3 566

KafkaSpout

KafkaSpout

KafkaSpout

Decode
Function

Decode
Function

Decode
Function

Count
Function

Count
Function

Count
Function

Database
State

Database
State

SQL

ssp_stats campaign_stats

impressions

clicks

conversions

newStream each each merge groupBy aggregate partitionPersist

campaign_stats

ssp_stats



Use case: stats-counter (exactly-once state)

key value last_transaction_id

ssp1 1994 17

ssp2 2389 18

key value last_transaction_id

campaign1 732 18

campaign2 245 17

campaign3 566 18

KafkaSpout

KafkaSpout

KafkaSpout

Decode
Function

Decode
Function

Decode
Function

Count
Function

Count
Function

Count
Function

Database
State

Database
State

SQL

ssp_stats campaign_stats

impressions

clicks

conversions

newStream each each merge groupBy aggregate partitionPersist

campaign_stats

ssp_stats

key <offset1, offset2> transaction_id

impressions <5831, 5917> 19

clicks <623, 680> 19

conversions <423, 442> 19

zookeeper



Use case: stats-counter (parallelism)

SQL

KafkaSpout

KafkaSpout

KafkaSpout

Decode
Function

Count
Function

Decode
Function

Count
Function

Decode
Function

Count
Function

Database
State

Database
State

ParallelismHint = 3 ParallelismHint = 6 ParallelismHint = 3 ParallelismHint = 1

Nimbus

Nimbus

Nimbus

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Work Process

Work Process

Work Process

Work Process



• Java library (based on Kafka producer and 

consumer APIs) run as a standard application

• no processing cluster and no external 

dependencies

• uses Kafka's parallelism model and group 

membership mechanism (scalability and 

fault-tolerance)

• does event-at-a-time processing (no batching)

• supports exactly-once processing 

Why Kafka Streams:

Source: kafka.apache.org

Kafka Streams



• consumes records from one or more input Kafka topics 

(source processors)

• sends records to output Kafka topic (sink processors)

Topology is a graph of stream processors that are 

connected by streams:

Source: kafka.apache.org

Kafka Streams: topology

Kafka Streams uses Kafka concepts:

• data record - Kafka message

• stream partition - Kafka topic partition

• keys determine the partitioning



   Kafka Streams: threading model

Source: kafka.apache.org



Use case: data-flow

Consumer

europe events

Decode
Function

Process
Function

Encode
Function

Producer

Consumer

asia events

Decode
Function

Process
Function

Encode
Function

Producer

Consumer

usa events

Decode
Function

Process
Function

Encode
Function

Producer

USER EVENTS

METADATA

SQL



Use case: data-flow (parallelism)

USER EVENTS

METADATA

SQL

input – topic: output – topic:
consumer

consumer

consumer

consumer

task 1 

task 2

task 3

task 4

producer

producer

producer

producer



Use case: data-flow (parallelism)

input – topic: output – topic:

USER EVENTS

METADATA

SQL

consumer

consumer

consumer

task 1 

task 2

task 3

task 4

producer

producer

producer

thread 1
instance 1

thread 2

thread 3

instance 2



Use case: merger

63 54 50 45 40 39

66 61 57 52 49 47

input – topic A

input – topic B

p 0

p 1

p 2

p 0

p 1

p 2

66 63 61 57 54 52 50 49 47 45 40 39

Output – topic

p 0

p 1

p 2



63 54 50 45 40 39

66 61 57 52 49 47

input – topic A

input – topic B

p 0

p 1

p 2

p 0

p 1

p 2

34 32 30 28 25 23 19 17

p 0

p 1

p 2

38 35

46 44 41 36

partition 0

partition 1 35

partition 2

partition 0

partition 1 36

partition2

Output – topic

Output
Producer

Partition
Queues

Input
Consumer

Partition timestamps

Instance 1

Instance 1

Input-topic A Input-topic B

Output
Producer

Partition
Queues

Input
Consumer



Kafka Workers: 
main features

0 1 2 3 4 5 6 7 8

partition-0:

0 1 2 3 4 5 6 7 8

partition-1: Consumer

1 4 5 8

0 1 4 6

0 2 3 6 7

2 3 5 7 8

Worker
Task - 00

Worker
Task - 01

Worker
Task - 10

Worker
Task - 11

subpartition-00:

subpartition-01:

subpartition-10:

subpartition-11:

Why Kafka Workers 
(github.com/RTBHOUSE/kafka-workers)

• better threading model with better 
resources utilization

o separating processing from 
consumption

o higher level of distribution



Kafka Workers: 
main features

✔✔✔ ✔partition-0:

✔✔✔✔ ✔partition-1:

Why Kafka Workers 
(github.com/RTBHOUSE/kafka-workers)

• asynchronous processing

o processing timeouts

o tighter control of offset commits

To commit

0 1 2 3 4 5



Kafka Workers: 
main features

Why Kafka Workers 
(github.com/RTBHOUSE/kafka-workers)

• backpressure

Consumer

5 8

4

3 6 7

7

Worker
Task - 00

Worker
Task - 01

Worker
Task - 10

Worker
Task - 11

subpartition-00:

subpartition-01:

subpartition-10:

subpartition-11:

To pause

To resume



Kafka Workers: 
main features

Why Kafka Workers
 (github.com/RTBHOUSE/kafka-workers):

• possibility to pause and resume processing for a given partition

• at-least-once semantics

• handling failures

• simplicity

• Kafka Consumer API

• no processing cluster, no external dependencies

• without translating messages to/from its internal data format

• no interprocess communication

• kafka-to-kafka, hdfs, bigquery, elasticsearch connectors



public interface WorkerPartitioner<K, V> {

int subpartition (ConsumerRecord<K, V> consumerRecord) ;

}

Kafka Workers: API



public interface WorkerTask<K, V> {

boolean accept(WorkerRecord<K, V> record);

void process (WorkerRecord,K, V> record, RecordStatus0bserver 

observer) :

}
public interface RecordStatus0bserver {

void onSuccess();

void onFailure(Exception exception);

}

Kafka Workers: API



Kafka Workers: threading model

0 1 2 3 4 5 6 7 8

partition-0:

0 1 2 3 4 5 6 7 8

partition-1: Consumer

5 8

4

3 6 7

7

Worker
Task - 00

Worker
Task - 01

Worker
Task - 10

Worker
Task - 11

subpartition-00:

subpartition-01:

subpartition-10:

subpartition-11:

✔✔✔ ✔partition-0:

✔✔✔✔ ✔partition-1:

To commit

0 1 2 3 4 5

WorkerThread-1

WorkerThread-2

WorkerThread-3

To pause

To resume

Instance-1



• platform monitoring

• much more stable 

platform

• higher quality of data 

processing

• HDFS & BigQuery & 

Elasticsearch streaming

• multi-DC architecture 

and data synchronization

• high scalability

• better data-flow 

monitoring, 

deployment & 

maintenance

Summary
What we have achieved:



Thank you.

Bartosz Łoś


