
25.03.2024

Stream processing -
part II

RTB HOUSE
Piotr Jaczewski

1. intro

2. advantages of stream processing

3. basic concepts

4. design patterns

5. fault tolerance

6. lambda architecture

Agenda

Stream processing - part II

“[stream processing
is] a type of data

processing engine
that is designed with
infinite data sets in

mind” - Tyler Akidau

infinite ==
unbounded, always

growing

everything
is a stream

What is stream
processing?

Attributes of a data stream

ordered

immutable

replayable

Streams are:

Request-response

Request-response vs
batch vs stream

• low latency

• often blocking

• also known as OLTP -

online transaction

processing

Batch

• high latency

• high throughput

• great efficiency

• stale data

Stream

• nonblocking

• reasonably low latency

• continuous and

ongoing

May 2011
Apache Flink. . .

2003
“TelegraphCQ:

continuous

dataflow

processing”

Historical timeline

2002
“Models and

issues in data

stream

systems”

Jan 2011
Kafka

Sep 2011
Apache Storm

. . .

2013
Amazon Kinesis

2015
Google Cloud

Pub/Sub +

Dataflow

2015
Microsoft Azure

Stream

Analytics

Typical use cases

2.

fraud detectionreal-time analytics

1. 3.

Internet of Things

5.

financial trading

4.

log processing

6.

supply chain and logistics

Real-time analysis

easier detection and addressing of issues

improved customer experience

increased agility and optimization

faster decision making

faster reaction to market fluctuations

Practical example: bot detector

certain bots are easy to

detect (they make hundreds

of actions per minute)

Bob Carl Carl Carl Alice Carl Bob Alice

BOT
DETECTION

Alice = 1 action
Bob = 1 action

Carl = 2173 actions

but difficult to eliminate

(they live only for several

minutes)

we can scan a stream of user

actions and filter out users

with too many actions

• faster development

• better productivity

Short feedback
loop when coding

OBSERVE

WRITE RUN

Is stream
processing always
the best
approach?

Stream processing concepts

Topology

• logical abstraction

for your stream processing code

coolhats.com
servers

Gotham
National Bank

servers

filter out
bots

join

database
connector

user actions
from

coolhats.com

transactions
from

Gotham
National

Bank

people
who likes

hats

enriched
transactions

postgres

• acyclic graph

of sources, processors, and sinks

Topology

coolhats.com
servers

Gotham
National Bank

servers

filter out
bots

join

database
connector

user actions
from

coolhats.com

transactions
from

Gotham
National

Bank

people
who likes

hats

enriched
transactions

postgres

sources streams processors streams sinks

• ingestion time

• event time

• processing time

• sometimes even more (our record: 20

timestamps in a single event)

Time

• used to keep track of information

about the events

• local: accessible only by a specific

instance, within the application

• external: global; outside the

application

State

processorinput
stream

state

output
stream

Stream - table duality

• a table is just

a stream of updates

id balance

101 1200

102 -300

101 200

101 3000

102 700

101 1200

102 -300

STREAMTABLE

UPDATE … SET balance = 200 WHERE id = 101;
UPDATE … SET balance = 3000 WHERE id = 101;
UPDATE … SET balance = 700 WHERE id = 102;
UPDATE … SET balance = 1200 WHERE id = 101;
UPDATE … SET balance = -300 WHERE id = 102;

• a stream is just

the change of a table

over time

Stream - table duality

Processing guarantees

at most once

at least once

exactly once

Design
patterns

Single-event processing

• aka map/filter pattern

json to
avro

> $1M?

trades
json

trades
avro

A-N
companies

O - Z
companies

json to
avro

large
trades

small
trades

• each event is handled

independently

• no state == easy scaling & load

balancing & failure recovery

Local state

• used to aggregate information

• local state == aggregation per partition

average

trades
avro

trades

A-N
companies

O - Z
companies

average

average
prices

A-N
companies

O - Z
companies

local state
for A-N

local state
for O-Z

Multiphase processing

• complex problem often

require complex topologies

daily
gain/lose

trades
avro

trades

A-N
companies

O - Z
companies

daily
gains/loses

local state
for A-N

local state
for O-Z

daily
gain/lose

daily
top 10

local state
for top 10

daily
top 10

• similar to multiple

MapReduce phases

External lookup
(stream - table join)

• enriching stream data

with database data

join

trades
avro

trades

A-N
companies

O - Z
companies

join

trades with
broker info

A-N
companies

O - Z
companies

stock
brokers

External lookup (stream - table join)

• capturing changes

to the database as events

• better performance

and availability

join

trades
avro

trades

A-N
companies

O - Z
companies

join

trades with
broker info

A-N
companies

O - Z
companies

stock
brokers

stock
brokers

local copy of
stock brokers

local copy of
stock brokers

Streaming
join

join

trades

trades

local cache of
trades from the

last 10 min

local cache of
trades from the

last 10 min

trades
trades
with

tweets


````````

Table – 
table join join on

broker id

trades
avro

stock
brokers

even
broker id

odd
broker id

brokers
with

licenses

even
broker id

odd
broker id

licenses

licenses

even
broker id

odd
broker id

stock
brokers

join on
broker id



Out of sequence 
events

• example: mobile device reconnects 

after 5h in airplane mode

• no easy solution old events

arriving late



Reprocessing

• running two versions 

of the application along each other

• possible thanks to stream 

properties: replayability, immutability, 

and ordering

trades

new average
prices

old average
prices

trades

old average
price calculator

new average
price calculator



Interactive queries

• read the results directly from the state 

instead of querying the database 

or output topic

average

trades
avro

trades

A-N
companies

O - Z
companies

average

average
prices

A-N
companies

O - Z
companies

local state
for A-N

local state
for O-Z

interactive
queries
engine



Time 
windows



Tumbling (fixed)



Hopping



Sliding



Session



Fault 
tolerance



`

Microbatching
break the stream into small blocks, and treat each block as a batch process



`

Checkpointing
periodically generate a checkpoint of state and write it to persistent storage



Atomic commit

X/Open XA (eXtended architecture): global transactions across 
heterogeneous components, based on two-phase commit protocol

Kafka does not support XA



Idempotence

idempotent operation performed multiple times has the same effect as 
performed once

example: “UPDATE table SET processed = true WHERE event_id = 101”

at least once + idempotent operations = effectively once



Rebuilding state

Option 1 

keep the state in a remote 
database

Option 2

keep the state local, 
and replicate 
it periodically

Option 3

do nothing, and after a 
failure simply replay the 

input stream from start and 
rebuild the state

applications must be able to restore the state after a failure



Streaming 
Architecture



Lambda architecture

“How to beat the CAP theorem” - Nathan Marz, 2011

new data

stream layer

batch layer

queries



• best of two worlds: low latency and 

possibility to process historical data

• algorithmic flexibility

• easy ad-hoc analysis

Positives:

Benefits & challenges

Negatives:

• inherent complexity

• maintaining two codebases

• synchronization between the layers 

is needed



Practical example: stats counter

new data

stream layer

queries

Kafka Workers ™



Kappa architecture
“Questioning the Lambda Architecture” - Jay Kreps, 2014

new data

queries

stream layer

batch layer



• strengths and weaknesses of data streams

• basic concepts and techniques

Summary

Two things to remember:



Thank you.

Piotr Jaczewski


