
18.03.2024

Stream processing -
part I

(Apache Kafka)

RTB HOUSE
Bartosz Łoś

Stream processing

What will this
lecture be about?

• messages, topics, partitions

• brokers, clusters

• producers, consumers

• replication

• log compaction

Kafka high-level architecture:

How does Kafka solve efficiency issues?

How does Kafka ensure delivery guarantees?

• occurred at some point in time

• immutable object (usually contains a key and value)

• contains a timestamp indicating when it happened

• encoded, stored in database and/or sent over the

network in order to process it

• generated by a producer and available to be

processed by multiple consumers

• grouped into a topic or stream

Stream processing:
events

What
an event is?

• container of similar events

• unbounded data, incrementally

processed

What an stream of events is?

Stream processing: events

Uses of streams:

• data pipelines that reliably get data

between systems or applications

• real-time applications that transform

or react to streams of data

• server requests

• bank transactions

• actions that users take on a web page

• messages

• sensor measurements

• web server logs

• hardware utilization metrics (CPU, memory, disk, network)

• tables changes in database, write-ahead logging (WAL)

Stream processing: events
Software processes events e.g.:

Stream processing:
concept of pub/sub (step 1)

Publish/subscribe messaging
system (in short: pub/sub):

• allows for publishing messages by

(multiple) producers and subscribing to

them by (multiple) consumers

• runs message brokers (servers) optimized

for handling message streams with some

durability guarantees

Many use cases for pub/sub start

out the same way:

• with a need to implement a simple

message queue or interprocess

communication channel

Example: an application that needs

to send monitoring information

Stream processing:
concept of pub/sub (step 1)

Solution: creating a direct connection from an application to a monitoring application
(that displays metrics on a dashboard) and pushing metrics over that connection

:

APP
(INSTANCE 1)

APP
(INSTANCE 1)

METRICS
SERVER

https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

Stream processing:
concept of pub/sub (step 2)

New needs: new business apps and new monitoring apps (that are getting metrics from
individual apps and are using them for various purposes):

● analyzing metrics over a longer term (doesn’t work well in the dashboard)

● active polling of the services for an alerting solution (e.g. for someone on maintenance duty)

Stream processing:
concept of pub/sub (step 2)

Solution: complex point-to-point connections between different apps

FRONTED
SERVER

FRONTED
SERVER

DATABASE
SERVER

DATABASE
SLAVE

CHAT
SERVER

SHOPPING
CART

BACKEND
SERVER

METRICS
UI

METRICS
ANALYSIS

ACTIVE
MONITORING

DATABASE
MONITOR

https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

Stream processing:
concept of pub/sub (step 3)

Solution for a complex architecture: setting up a central application that receives metrics
from all the applications and allows any system to query those metrics

FRONTED
SERVER

FRONTED
SERVER

DATABASE
SERVER

DATABASE
SLAVE

CHAT
SERVER

SHOPPING
CART

BACKEND
SERVER

METRICS
UI

METRICS
ANALYSIS

ACTIVE
MONITORING

DATABASE
MONITOR

METRICS
PUB / SUB

https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

Stream processing:
concept of pub/sub (step 4)

• metrics

• log messages

• system requests

New needs: processing various
types of data e.g.:

for various purposes
e.g.:

• system monitoring

• machine learning

• reports

Stream processing:
concept of pub/sub (step 4)

Solution: a separate pub/sub system for every different flow

FRONTED
SERVER

FRONTED
SERVER

DATABASE
SERVER

DATABASE
SLAVE

CHAT
SERVER

SHOPPING
CART

BACKEND
SERVER

METRICS
PUB / SUB

LOGGING
PUB / SUB

TRACKING
PUB / SUB

METRICS
UI

METRICS
ANALYSIS

ACTIVE
MONITORING

DATABASE
MONITOR

LOG
SEARCH

SECURITY
ANALYSIS

OFFLINE
PROCESSING

https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

Stream processing:
concept of pub/sub (step 5)

problem: maintaining duplicated systems

for queuing data, all of which have their

own individual bugs

and limitations

Problem Goal

a centralized system that allows

for processing generic types of data

(which will grow as the business grows)

and easier integration of different

applications with a streaming

platform in the middle

Stream processing:
concept of pub/sub (step 5)

• shift from system based on the current state to system which process data as events (event-driven

architecture)

• an alternative to batch processing (a lot of data is unbounded)

Other potential goals:

APP APP APP APP

CACHE

SEARCH

HADOOP
WAREHOUSE

BATCH
JOBS

BATCH
JOBS

APP APP APP APP

CACHE

SEARCH

WAREHOUSE

PUB / SUB

• dropping messages

• backpressure (blocking the producer from sending more messages)

• asynchronous processing (buffering in producer-consumer queue)

Stream processing: guarantees and issues
Producer and consumer separation: what happens if the producers send messages
faster than the consumers can process them?

producer waits for the broker to confirm that it has buffered the message and does not wait for the
message to be processed by consumers

what happens as that queue grows? does it write messages to the disk? how does the disk access affect
the performance?

• durability requires writing to disk and/or replication

• delivery (reliability) semantics: exactly-once, at-least-once or at-most-once

Stream processing: guarantees and issues

Fault-tolerance: what happens in case of server failures or temporary
unavailability of consumers?

• high-throughput (periodic data loads) and low-latency

Performance:

• scalability of messaging system and distribution of processing

Scalability:

Kafka high-level
architecture

• originally developed at LinkedIn, open-sourced

• an event streaming platform

• used to collect, store and process real-time data

streams at scale

• use cases: distributed logging, stream processing,

pub-sub messaging

Apache Kafka:

• a key-value pair

• keys and values are internally serialized as byte arrays

• a key is not necessarily a unique identifier for the

message

Kafka high-level
architecture: messages

Message (also called event or record):

• durable logs of messages

• immutable, append only

• can only seek by offset

• stateless: events are not deleted after consumption

• topic retention: retaining messages for some period of

time (e.g. 7 days) or until the topic reaches a certain

size in bytes (e.g. 1 GB)

Kafka high-level
architecture: topics
Messages in Kafka are categorized
into topics:

TOPIC
A

• each partition can be hosted on a different server

(a single topic can be scaled horizontally)

• client applications (consumers and producers)

read/write the data from/to many brokers

at the same time

Kafka high-level
architecture: partitions

Topics are broken down into a number
of partitions (a partition is a single log):

TOPIC
A

PARTITION
0

PARTITION
1

PARTITION
2

• messages sent by a producer to a particular partition

will be appended in the order they are sent

• a consumer instance sees messages in the order they

are stored in the log

Kafka high-level
architecture: partitions
Each message in a given partition has a
unique offset (an integer value that
continually increases for each partition)

TOPIC
A

PARTITION
0

PARTITION
1

PARTITION
2

Kafka gives the following guarantees:

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9

• receives messages from producers,

assigns offsets to them, and writes the

messages to storage on disk

• responds to fetch requests for partitions

(from consumers) and returns messages

Kafka is run as a cluster of one or
more brokers (servers). Each

broker:

Kafka high-level architecture:
brokers and clusters

One of the brokers functions as the
cluster controller responsible for

administrative operations like:

• assigning partitions to brokers

• monitoring for broker failures

BROKER 0 BROKER 1 BROKER 2 BROKER 3

broker_ID = 0 broker_ID = 1 broker_ID = 2 broker_ID = 3

CONTROLER

ZOOKEEPER

/controller = 2

• every broker tries to write its value

to /controller path in Zookeeper

• the one which wins the creation

of this path becomes the controller

Kafka high-level
architecture:
brokers and clusters
A key-value store (Apache Zookeeper)
is used to elect the controller:

Kafka high-level architecture: producers

A producer (also called publisher or writer) produces messages, controls which partition
it publishes messages to and sends messages directly to the broker

• if no partition is specified but a key is present, choose a partition based on a hash of the key (messages with the

same key are always written to the same partition):

partition(event) = hash(event.key) % number of partitions

• if no partition or key is present, choose the sticky partition that changes when the batch is full, balancing

messages (batches) over all partitions of a topic evenly

Default partitioner:

• to accumulate no more than a fixed

number of messages (e.g. 64k)

• to wait no longer than some fixed

time (e.g. 10 ms)

Producer accumulates data in
memory and sends out larger batches
in a single request, can be configured

(additional latency vs better
throughput):

Kafka high-level architecture:
producers

The broker sends back
a response:

• when successful: RecordMetadata (topic,

partition and message offset)

• when unsuccessful: error (producer may

retry sending the message a few more

times)

KAFKA BROKER

PRODUCER RECORD

TOPIC

[PARTITION]

[KEY]

VALUE

TOPIC A
PARTITION 0

BATCH 0

BATCH 1

BATCH 2

TOPIC B
PARTITION 1

BATCH 0

BATCH 1

BATCH 2

SERIALIZER PARTITIONER

RETRY? FAIL?

YES

YES

• subscribes to one or more topics and gets

messages in the order in which they were

produced

• keeps track of which messages it has

already consumed and issues fetch

requests specifying its offset in the log

A consumer
(also called subscriber or reader):

Kafka high-level architecture:
consumers

Pull based consumption
(optimal batching without

introducing unnecessary latency):

• consumer always pulls all available

messages after its current position in the

log (or up to some configurable max size)

• to avoid polling in a tight loop request

could be blocked waiting until data

arrives

• one or more consumers that work together to consume

a topic, the group ensures that each partition is only

consumed by one member

• if a single consumer fails, the remaining members

of the group will rebalance and continue from the last

committed offset

Kafka high-level
architecture: consumers
Consumers work as part of a consumer group:

Consumers maintain membership in a consumer

group by sending heartbeats to a group coordinator

(one of the brokers, different for different consumer

groups)

TOPIC A CONSUMER GROUP 1

CONSUMER GROUP 2

PARTITION 0

PARTITION 1

PARTITION 2

PARTITION 3

CONSUMER 0

CONSUMER 1

CONSUMER 2

CONSUMER 3

CONSUMER 0

CONSUMER 1

Kafka high-level architecture:
consumers

TOPIC A

PARTITION
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13

PARTITION
1 0 1 2 3 4 5 6 7 8 9

PARTITION
2 0 1 2 3 4 5 6 7 8 9 10 11

PARTITION
3 0 1 2 3 4 5 6 7 8 9 10 11 12

CONSUMER 0

CONSUMER 1

CONSUMER 2

CONSUMER
GROUP

Kafka high-level architecture:
consumers

TOPIC A

PARTITION
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13

PARTITION
1 0 1 2 3 4 5 6 7 8 9

PARTITION
2 0 1 2 3 4 5 6 7 8 9 10 11

PARTITION
3 0 1 2 3 4 5 6 7 8 9 10 11 12

CONSUMER 0

CONSUMER 1

CONSUMER 2

CONSUMER
GROUP

Kafka high-level architecture:
replication

A partition may have replicas distributed
among brokers

LOGS

TOPIC A - PARTITION 1

LOGS LOGS LOGS

TOPIC B - PARTITION 2

TOPIC B - PARTITION 1

TOPIC A - PARTITION 1

TOPIC B - PARTITION 2

TOPIC A - PARTITION 2 TOPIC B - PARTITION 1

TOPIC A - PARTITION 2

TOPIC A - PARTITION 1

TOPIC B - PARTITION 2

TOPIC B - PARTITION 1

TOPIC A - PARTITION 2

BROKER 1 BROKER 2 BROKER 3 BROKER 4

• all consumers and producers operating on

that partition must connect to the leader

(write to and read from)

• followers consume messages from the

leader (just as normal consumers), the logs

on the followers are identical to the

leader's log

Each partition has a single leader
and (zero or more) followers:

Kafka high-level architecture:
replication

Another broker can take over
leadership if there is a broker

failure:

• for a topic with replication factor (the total

number of replicas including the leader)

N, Kafka will tolerate up to N-1 server

failures without losing any committed

messages

• the controller is responsible for electing a

new leader and propagating this

information

`

Kafka high-level architecture:
replication

KAFKA CLUSTER

LEADER FOLLOWER

FOLLOWER LEADER

TOPIC A
PARTITION 0

TOPIC A
PARTITION 0

TOPIC A
PARTITION 1

TOPIC A
PARTITION 1

PRODUCER CONSUMER

MESSAGES
FROM A/0

MESSAGES
FROM A/1

MESSAGES
FROM A/0

MESSAGES
FROM A/1

BROKER 2

BROKER 1

REPLICATE
A / 0

REPLICATE
A / 0

• a node is alive: must be able to maintain its

session with ZooKeeper

• not too far behind the leader: must

replicate the writes happening on the

leader

In sync replica:

Kafka high-level architecture:
replication

The leader keeps track of the set of
in sync replicas (ISR) persisted to

ZooKeeper:

• when the leader dies, only members of

this set are eligible for election as leader

• in case of crash before rejoining, it must

fully resync again

Kafka high-level architecture: replication

Only committed messages are ever given out to the consumer:

• 0 replicas

• 1 replicas

• all (-1) replicas (means all the current in-sync replicas)

Producer can choose (controlled by the acks setting) whether it waits
for the message to be acknowledged by:

• a message is committed when all in sync replicas have applied it to their log

`

Kafka high-level architecture:
replication

PRODUCER

LEADER FOLLOWER FOLLOWER

COMMIT

TOPIC A
PARTITION 1

TOPIC A
PARTITION 1

TOPIC A
PARTITION 1

BROKER 1 BROKER 2 BROKER 3 CONSUMER

1 2

2

3

4

• retains the last message produced with a specific

key (when only the last update is interesting)

• allows for deletes (tombstone is a message with

a key and a null value)

Kafka high-level
architecture:
log compaction

Log compaction:

0 1 2 3 4 5 6 7 8 9 10

K1 K2 K1 K1 K3 K2 K4 K5 K5 K2 K6

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

3 4 6 8 9 10

K1 K3 K4 K5 K2 K6

V4 V5 V7 V9 V10 V11

OFFSET:

KEY:

VALUE:

OFFSET:

KEY:

VALUE:

`

Kafka high-level architecture:
log compaction

The compaction is done in the background by periodically recopying log segments:

• the head (retains all messages with sequential offsets)

• the compacted tail (retains the original offset assigned to the message)

0 17 22 23 27 35 38 40 53 61 63 71 76 78 87 88 89 90 91 92 93 94 95 96 97

Delete
Retentio

n
Point

Cleaner
Point

Next
Write

Long
Tail

Long
Head

• reads and appends to files (instead of

random access data structures like BTree)

How does Kafka solve efficiency issues?

context: HDD performance, throughput

of linear writes vs latency of disk seeks

(e.g. 600MB/sec vs 100k seeks/sec

in case of 7200rpm SATA RAID-5)

• using pagecache instead of maintaining

an in-memory cache (all data is

immediately written to a persistent log

on the filesystem without flushing it)

Poor disk access patterns:

context: OS optimizations (read-ahead

and write-behind, all disk reads and

writes except for direct I/O go through

OS pagecache)

How does Kafka solve
efficiency issues?

• storing a compact byte structure rather than

individual objects

context: JVM memory overhead of objects,

slow GC as the in-heap data increases

• no instant deletes (retain messages for

some time)

context: reads do not block writes or each

other

Poor disk access patterns:

• larger network packets and network round trips limited

• larger sequential disk operations and contiguous memory blocks

• larger linear chunks fetched by consumer

How does Kafka solve efficiency issues?

Too many small I/O operations (between client and
server and in the server's own operations):

• protocol allows for grouping messages into batches

As a result:

How does Kafka solve efficiency issues?
Excessive byte copying:

• OS reads data from the disk into pagecache in kernel space

• app reads the data from kernel space into a user-space buffer

• app writes the data back into kernel space into a socket buffer

• OS copies the data from the socket buffer to the NIC buffer (network interface controller) where it is sent over the

network

Context: common data path for transfer of data from file to socket:

• common binary message format (shared by the producer, the broker and the consumer; data chunks can be

transferred without modification between them)

• allowing the OS to send the data from pagecache to the network directly with sendfile() system call

`

Potential Kafka
implementation
without sendfile()
system call

APPLICATION CONTEXT

PRODUCER APPLICATION
BUFFER

OS BUFFER SOCKET BUFFER

DISK NIC BUFFER CONSUMER

KERNEL CONTEXT

PRODUCER
WRITES DATA

WRITE
TO RAM

COPY
DATA

COPY
DATA

COPY
DATA

SYNC TO DISK
PERIODICALLY

LOAD DATA
FROM DISK

SEND TO
CONSUMER

`

Actual Kafka
implementation
with sendfile()
system call

APPLICATION CONTEXT

PRODUCER APPLICATION
BUFFER

OS BUFFER SOCKET BUFFER

DISK NIC BUFFER CONSUMER

KERNEL CONTEXT

PRODUCER
WRITES DATA

WRITE
TO RAM

SYNC TO DISK
PERIODICALLY

LOAD DATA
FROM DISK

SEND TO
CONSUMER

COPY
DIRECTLY

• efficient compression requires

compressing multiple messages together

rather than compressing each message

individually

How does Kafka solve
efficiency issues?

• sent by the producer in compressed form

• written in compressed form to the log

• decompressed by the consumer

Network bandwidth
optimization: end-to-end batch

compression:

The batch
of messages

will be:

How does Kafka ensure delivery
guarantees?

the durability guarantees

for publishing

a message

Two issues:

the processing guarantees

when consuming

a message

“There are only two hard problems in distributed systems

2. Exactly-once delivery 1. Guaranteed order of messages 2. Exactly-once delivery”

• resending the message means

at-least-once delivery semantics

How does Kafka ensure delivery
guarantees?

• the broker assigns each producer an ID

and deduplicates messages using a

sequence number that is sent by the

producer along with every message

If a producer attempts to publish a

message and experiences a

network error it cannot be sure if

this error happened before or

after the message was committed:

The Kafka producer supports an

idempotent delivery option which

guarantees that resending will not

result in duplicate entries in the

log:

How does Kafka
ensure delivery
guarantees
If a consumer never crashed it could just store
this position in memory, but if the consumer
fails and we want this partition to be taken
over by another process the new process will
need to choose an appropriate position from
which to start processing

At-least-once: read the messages, process the messages,
and finally save its position

0 1 2 3 4 5 6 7 8 9 10 11 12

LAST COMMITED
OFFSET

13

THESE EVENTS WILL BE
REPROCESSED

IN CASE OF REBALANCE
CAUSING DUPLICATES

EVENTS RETURNED
BY LAST POLL

EVENTS WE ARE
PROCESSING RIGHT NOW

How does Kafka
ensure delivery
guarantees

At-most-once: read the messages,
then save its position in the log,
and finally process
the messages

0 1 2 3 4 5 6 7 8 9 10 11 12

LAST COMMITED
OFFSET

13

THESE EVENTS WILL BE
LOST IN CASE OF

REBALANCE

EVENTS RETURNED
BY LAST POLL

EVENTS WE ARE
PROCESSING RIGHT NOW

• the ability to send messages to multiple

partitions using transactions

• the consumer's position is stored as a

message in a topic, so we can write the

offset to Kafka in the same transaction as

the output topics receiving the processed

data

How does Kafka ensure delivery
guarantees?

• in the default read_uncommitted isolation

level all messages are visible to

consumers even if they were part of an

aborted transaction

• in the read_committed isolation level the

consumer will only return messages from

transactions which were committed (and

any messages which were not part of a

transaction)

Exactly-once when consuming from a Kafka topic

and producing to another topic:

• a two-phase commit between the storage

of the consumer position and the storage

of the consumers output`

How does Kafka ensure delivery
guarantees?

Exactly-once when writing to an external system

OPTION 1

• letting the consumer store its offset in the

same place as its output

OPTION 2

stream processing as a
paradigm and potential

applications of
event-driven
architectures

Kafka high-level
architecture and

motivations behind
design decisions

Kafka implementation
details with regard to
its performance and
delivery guarantees

Summary
We have discussed:

Thank you.

Bartosz Łoś

