
11.03.2024

Data storage in
distributed systems -

part II

RTB HOUSE
Piotr Jaczewski

We will cover the topics of:

In this part of the course
we will focus on NoSQL
databases and their usage
in distributed systems.

What will this lecture be about?

1. Data models in NoSQL storages.

2. Implementation details of selected NoSQL storages.

3. Data formats and schema evolution in distributed

systems.

• Designed to easily scale horizontally.

• Usually don’t use strict schemas.

• Focused on data aggregates.

• Don’t use standardized SQL, but some have query languages.

• Mostly support limited transactional capabilities (like multi-object

transactions), due to running on clustered environment.

• Provide various options for data consistency.

Some of the common features of the NoSQL databases:

NoSQL Databases

CAP Theorem

Consistency

Availability Partition
Tolerance

CA CP

AP

 https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

CAP Theorem - critique
A great article by Martin Kleppmann:

https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

NoSQL Data Models

NoSQL

Key Value Document Wide-Column Graph

Key Value Model
• May be viewed as a generalization of a hash table

with put/get/remove operations.

• Data type agnostic - the understanding of stored

value is the responsibility of client applications.

• Some implementations may include some built-in

data types like maps, sets, counters.

• None or limited querying capabilities

• Offer great performance.

Document Model
• Can be considered as a subtype of key-value databases.

• Have some awareness of the data stored.

• The document format is usually JSON, BSON, XML, etc.

• The documents doesn’t have to be of the same schema

in a table/collection.

• Slightly improved querying capabilities.

• Support for secondary indexes.

• Allow partial document update.

Wide-Column Model
• Another variation of key-value model.

• No relations between tables.

• Map keys to rows and rows consist of groups of columns.

• Groups of columns are called column families.

• Usually each row may have a varying number of columns

within a column family.

• Nonexistent columns do not take storage space.

• Some implementations feature SQL-ish query language.

Logical Data Model

ROW KEY
SOCIAL NETWORK ACTIVITY

SN NAME USER ID PAGE ADDRESS TYPE DATE TEXY

Boboo‰
a_banana

Boboo a_banana
Boboo.com/

a_peach
Like 6/3/2018

Boboo‰
a_pineapple

Boboo a_pineapple
Boboo.com/
a_banana

Comment 6/13/2018 Nice pic, bro!

Boboo‰
a_watermelon

Boboo a_watermelon
Boboo.com/
a_pineapple

Comment 6/10/2018
Hey, that’s my

jacket! I’ve been
looking all over!

Chiching‰
a_cucumber

1234 a_cucumber
Chiching.com/

a_kohlrabi
Comment 5/25/2018 Wow! What a bike!

Chiching‰
a_kohlrabi

1234 a_kohlrabi
Chiching.com/

a_kohlrabi
Comment 5/25/2018 Yeah, I know :D

Row key
Column family Column

qualifier

Cell

Logical Data Model

KK78B9012

SN_NAME USER_ID PAGE_ADDRESS ACTIVITY_TYPE ACTIVITY_DATE ACTIVITY_TEXT

Boboo a_watermelon
Boboo.com/
a_pineapple

Comment 6/13/2018
Hey, that’s my

jacket! I’ve been
looking all over!

47aBb096

SN_NAME USER_ID PAGE_ADDRESS ACTIVITY_TYPE ACTIVITY_DATE ACTIVITY_TEXT

Boboo a_pineapple
Boboo.com/
a_banana

Comment 6/13/2018 Nice pic, bro!

1673Xy035

SN_NAME USER_ID PAGE_ADDRESS ACTIVITY_TYPE ACTIVITY_DATE

Boboo a_banana
Boboo.com/

a_peach
Like 6/3/2018

Boobo Activity

Row key
Column family

Column

name friend email

Jo George George@gmail.com

Jo Guy Guy@gmail.com

Jo John John@gmail.com

Guy Jo Jo@gmail.com

Guy John John@gmail.com

Rowkey = Guy

Rowkey = Jo

Jo:email
Jo@gmail.com

John:email
John@hotmail.com

John:email
John@hotmail.com

George:email
John@hotmail.com

Guy:email
guy@gmail.com

cqlsh> select * from friends;

CREATE TABLE friends
(name. text,
friend text,
email text,
PRIMARY KEY (name, friend))

Cassandra CQL view of column family

Actual column family structure

Friends column family

Graph Model

• Focused on the relationship between data entities.

• Store both entities and edges between them.

• Both entities and edges can have their custom

properties.

• Support querying and traversing the object graphs.

• Traversing the graph is very fast.

• For specific graph related scenarios.

Relationships
can have properties
(name/value pairs)

:HAS_CEO
start_date: 2008-01-20

Relationships connect
Nodes and represent

actions (verbs)

:LOCATED_IN

Relationships are directional

Nodes represent
objects (verbs)

name: Amy Peters
date_of_birth: 1984-03-01
employee_ID: 1

Nodes can have
properties

(name / value pairs)

NoSQL Storages Architecture

Apache HBase

Apache Cassandra

Aerospike DB

MongoDB

In the next part of the lecture we will discuss the high level architecture
of the following NoSQL solutions:

MongoDB

• Document oriented database - documents in JSON

(BSON internally).

• Support for large data sets.

• Supports searching by fields, range queries and using

regular expressions.

• Supports indexing/secondary indexes.

• Dedicated clients/REST API.

• Mature and production ready.

MongoDB Architecture

Router
(mongos)

Shard 2
(mongod)

Shard 1
(mongod)

Shard 3
(mongod)

Config
Server

read / write

read / write

check shard
distribution

• MongoDB will periodically assess the

balance of shards across the cluster.

• Rebalance operation will move

chunks between shards.

• Chunks contain adjacent values

of shard keys.

• Range based sharding - may result

in shard imbalance.

• Hash based sharding - more even

value distribution.

• Tag-aware sharding - explicitly

determine groups of shards on which

range of documents will reside.

Methods of sharding:

MongoDB Sharding

MongoDB Cluster
Replication
• Sharding is combined with replication.

• Each shard is replicated across a replica set.

• Master accepts writes which are then applied

to replicas via oplog collection.

• Master node is determined by an election.

• To become a primary a node must be able

to contact more than half of replica set.

• Election is based on priority set by administrator

and timestamp of the last operation.

heartbeatheartbeat

heartbeat

replicate replicate

Re
pl

ic
a

Re
pl

ic
a

M
as

te
r

oplog

Replica set

MongoDB
Concurrency/Consistency

• Supports (since version 4.2) ACID transactions on

multiple documents between shards.

• Pessimistic concurrency control at global, database,

collection levels (explicit locks)

• Optimistic concurrency control at document level

(either manual or via transactions).

➢ Write concern - the client may be ordered to write

synchronously only to primary or also to a specified

number of replicas - strong consistency.

➢ Read preference - the client may specify whether the

read request is routed to primary or secondary replica.

➢ Read concern - the client may choose to read only

replicated data that is durable or read the newest data

that may not be yet replicated and thus can be lost.

• Consistency is tuneable:

MongoDB Usage Considerations

• When a strict schema

is a problem.

• Use for CRUD applications,

Web APIs storage, Content

Management Systems.

• Straightforward architecture.

• Rather easy maintenance

and configuration.

• Be careful with relationships

between documents - no

constraints.

• No rigid schema is not always

your friend - custom versioning

patterns must be implemented

by application.

Reasons not to use:Reasons to use:

HBase
• Wide-Column oriented.

• The data model is strictly based on the original

Google BigTable specification.

• Provides random access database services

on top of HDFS.

• Does not bother with data redundancy or disk

failures - these are handled by HDFS.

• Can be easily accessed via MapReduce jobs on Hadoop.

• Advanced querying via Hive or Apache Phoenix.

1. find catalog create, update, delete tables

2. find RS
manage regions

manage regions

3. read / write

Region Server Region Server

Region Server
(catalog) HBase Master

Region Region
Region

Region

Region

Region
Table

-ROOT- .META

WAL WALHFile HFile HFile HFile

HBase Architecture

HDFS

Region Server

MemoryStore BlockCache

WAL HFileHFile HFile HFile HFile

Region

1 . 1 write

1 . 2 write

2 . 1 read

2 . 2 read if missing in Memstore

2 . 3 fetch block if not in cache

1 . 3 flush

HBase Storage
Architecture

HDFS

• RegionServers are co-located with

the Hadoop HDFS DataNodes for

good data locality.

• Data locality can be broken by

RegionServer rebalance, failovers.

• Data locality is usually restored

when the underlying HFiles are

compacted.

• Regions are equivalent to range

based shards.

• HBase Master will evaluate the

balance of regions across all

RegionServers.

• Regions can be splitted when

becoming too large and can be

relocated to other RegionServers

by the HBase Master.

HBase RegionServer

HBase
RegionServer

Region Server

Server

short – circuit reads

Region
Region

Region

HDFS
DataNode

Region Server

Server

Region
Region

Region

HDFS
DataNode

• Table scans do not use MVCC - all

writes committed before the scan

started will be visible, as well as those

committed after.

• Lost writes are prevented via

checkAndPut/Mutate/Delete family

of functions (manual optimistic locking).

• No multi-object transactions, only

atomicity of operations at row-level.

• Row-level locking for every update, even

when mutation crosses multiple Column

Families.

• Reads are not blocked by write

operations - concurrent read will see the

previous version before update -

Multiversion Concurrency Control at

row-level.

HBase Concurrency/Consistency

• Secondary replicas

for RegionServers provide

availability for read operations.

• Until failover is done

the affected region is only

available for reads.

• Thus secondary

RegionServers are read only.

• Secondary RegionServers

follow the primary and see

only committed updates.

• Secondary RegionServers

do not make their copy

of the HFiles - no storage

overhead, the data is kept in

BlockCache or read from

primary HFiles.

• Replica RegionServers

memory state can be

refreshed from primary HFiles

at a interval - higher chance

of stale read.

• Replica RegionServers

memory state can be

asynchronously updated

via WAL replication - lower

chance of stale reads.

• Reads from replica

RegionServers can be also

allowed via Timeline

Consistency.

HBase Concurrency/Consistency

HBase Timeline
Consistency

value = 1value = 2

value : 1value : 2

value : 3

value = 3
Region Server
(secondary)

Region Server
(secondary)

Region Server
(primary)

value = 1
value = 2

value = 3

value = 1

value = 2
value = 3

in flight
value = 1

value = 2

value = 3

in flight

2. replicate in
order

1. write values

2. replicate in
order

3. Read from all replicas,
whichever comes first wins,
however primary is given

a time advantage

• If a true, BigTable like wide

column data model is required.

• If MapReduce jobs must be run

on data.

• If there is an existing

Hadoop/HDFS cluster.

• If there are billions of potential

rows.

• Complex multi-element architecture.

• Painful operations and maintenance.

• High performance requires a lot of

memory for BlockCache.

• A myriad of cumbersome

dependencies for client libraries.

Reasons not to use:Reasons to use:

HBase Usage Considerations

Cassandra
• Wide-column oriented (implicitly).

• The clustering mode is based on the concept

derived from Amazon Dynamo.

• Linear scalability, you can expand the cluster

or shrink horizontally whenever needed, using

commodity hardware with no downtime.

• Each node in the cluster can work as a cluster

coordinator and perform all operations.

• Leaderless architecture, uses gossip protocol

to determine the cluster state.

• Cassandra distributes data throughout

the cluster by using consistent hashing

technique.

• Each node is allocated a range of hash

values and data is placed on the node if

the primary key hash lies within the

nodes range.

Cassandra Consistent Hashing

• If the number of ranges is equal to the

number of nodes then addition or

removal of node will require a lot of data

movement and can result in a cluster

imbalance.

• So we introduce a lot more ranges

mapped to virtual nodes.

• Virtual nodes mapped to physical nodes,

so that the addition/removal of node will

cause few ranges to move and will leave

the cluster balanced.

Cassandra Consistent Hashing

A
B

C

D

E
FG

H

I

J

K
LA, D, G, J

B, E, H, K

C, F, I, L

A, G, J

B, E, K D, H, L

C, F, INode 2

Node 1

Node 3

Node 1 Node 3

Node 2 Node 4

New node
added

Virtual
Nodes

Initial distribution Hash range: -2^63 to 2^63 - 1

t

Cassandra Replication

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

1 st 1 st2nd

3rd 3rd

2nd

different rackdifferent DC

Network Topology StrategySimple Strategy

Replication Factor = 3

t

Cassandra Reads / Writes

different rack

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Coordinator

WriteRead

Replication Factor = 3

Coordinator

digest

digest read

digest

write to
all

available
replicas

but only the
specified

number must ack

• Follows the Amazon Dynamo model with tunable

consistency for writes and reads.

• Write Consistency levels:

o ALL - all replicas must acknowledge the write.

o ONE\TWO\THREE - the specified amount of

nodes must acknowledge the write.

o QUORUM - majority of replica nodes must

acknowledge the write.

o ANY - any node can acknowledge, even if the

node is not responsible for storing the particular

data.

• Write Consistency levels in multi DC scenario:

o LOCAL_QUORUM - majority of replica nodes

in a local DC must acknowledge the write.

o EACH_QUORUM - majority of replica nodes

in each clustered DC must acknowledge the

write.

Cassandra Consistency

Cassandra Consistency

ONE/TWO/THREE - reads will be polled from the specified number of replica nodes.

QUORUM - read completes after majority of nodes have returned the data.

LOCAL_ONE/LOCAL_QUORUM/EACH_QUORUM - analogous levels for multi-DC setup.

ALL - all replica nodes are polled for the data.

Read Consistency levels:

t

Cassandra Consistency Levels

Write\Read ONE QUORUM ALL

ONE

High performance and
availability, lowest

consistency.

Fast writes with high
availability, moderate

consistency.

Fast writes with high
availability, slow reads
with consistency and

low availability.

QUORUM
Fast and highly available

reads with moderate
consistency.

Medium performance,
high availability and
strict consistency.

Slow reads with low
availability and strict

consistency.

ALL

Slow writes with low
availability, fast and

consistent reads.

Slow writes with low
availability, consistent

available reads of
medium performance.

Strict consistency,
lowest performance and

availability.

Cassandra Consistency Repair

• If write consistency level is not

set to ALL, inconsistencies may

appear due to the node

downtimes, network partitions

etc.

• Hinted handoffs - a technique

where a node will store an

update for a temporarily

unavailable replica node. If the

failed node is restored, it will

receive the update.

• Write consistency level ANY will

write hinted handoff even if all

replicas are down.

• Hinted handoffs are deleted

after some time.

• Read repair - if hinted handoffs

were deleted, the normal read

operation may be used to fix

consistency

• After returning the value to the

client the coordinator node

writes the correct data to the

inconsistent replica.

• Anti-entropy repair - compares

all nodes and writes most

recent data to fix replicas.

https://martinfowler.com/articles/patterns-of-distributed-systems/paxos.html

• The unit of modification is a single column

in a row.

• Multiple clients can update separate columns

in a row without a conflict.

• Conflicting writes are resolved using

timestamps - “Last Write Wins”.

• Support for “lightweight”, “optimistic”

transactions limited to a single operation on a

row.

• Compare-and-set - operation checks the value

and if the value is as expected, updates the

value, otherwise operation needs to be retried.

• Transaction implemented by a quorum-based

transaction protocol - Paxos:

Cassandra Concurrency

https://martinfowler.com/articles/patterns-of-distributed-systems/paxos.html

Cassandra Log-Structured Merge Tree

MemTable

Bloom Filter Bloom Filter Bloom Filter

Index Index Index

Bloom Filter
Index

SSTable

SSTableSSTableSSTableCommitLog

1. write

2. write

4. purge

3. flush

compact compact compact

SSTable = Sorted Strings Table

Tombstone – record deletion

• Applicable for most data scenarios.

• Huge datasets, accessed by “almost”

SQL (no joins) - CQL.

• Easy horizontal scaling, cross-DC replication.

• Leaderless architecture - increased

availability.

• Disk space consumption - it is difficult

to tune the SSTable compaction properly

in data intensive scenarios.

• Works on JVM - garbage collections,

etc. may affect performance

(consider using ScyllaDB).

• Relatively complex - bugs?

Cassandra Usage Considerations

Reasons to use Reasons not to use:

Aerospike
• Very fast data access by key.

• Hybrid storage - RAM + block devices + PMEM (Persistent Memory).

• Can store data on raw SSD/NVMe block devices - bypassing

usual filesystem layer.

• In-memory indexes preserved on a shared memory segment

(for fast recovery).

• Relatively easy single master per partition replication scheme.

• Client-tunable consistency policies

• Transactions are limited to a single record and are CAS based.

• No MVCC (Multi Version Concurrency Control)

• Strives for availability.

t

Aerospike Hybrid Storage

Data Storage

NVMe Flash DRAM PMEM

Primary
index

storage

NVMe
Flash

ALL NVMe Flash:
Ultra large records sets

Not recommended. Not recommended.

DRAM Hybrid: best price –
performance.

High performance. No
persistence.

Not common.

PMEM
Hybrid: Fast restart

after reboot. Very large
data sets.

Not recommended.
All PMEM: Fast restart
after reboot, with high

performance.

Aerospike Hybrid Storage
• Data is always distributed into 4096 partitions, evenly spread across nodes.

• Data model is straightforward:

Bin Bin BinBin

Bin Bin Bin

Bin Bin BinBin

Bin Bin Bin

Record Set Record

Namespace

Aerospike
at

RTB House

1. read from cache

2. read from
storage

(if missing cache)

3. update cache
(set TTL))

In-Memory
Cluster

Persistent
Storage
Cluster

High RAM
Machines

Heavy-SSD
Machines

Fronted
Application

• Low latency access to data.

• High concurrency writes support.

• Easy cluster management.

• Community version is severely limited

(number of nodes, amount of data).

• Frequent scans are heavy and involve

all nodes, due to the hash-based data

distribution model.

Aerospike Usage Considerations

Reasons to use Reasons not to use:

• Unstructured data (images, text, binary files).

• Structured data in text document formats:

o JSON

o XML

• Structured data in binary formats:

o BSON - Binary JSON

o ProtocolBuffers

o Apache Avro

• What we are aiming for is the forward/backward

compatibility between schema versions.

• We want to support schema evolution.

What to store in a (key-value)
NoSQL Database?

Avro vs Protocol Buffers
Protocol Buffers:

• Support for schema evolution via field tags (order numbers).

• Field tags cannot change, and possible change of types must
be compatible.

• Field tags must be written to a serialized data.

• Prevalent in various Google ecosystem tools.

Avro:

• Must know the writer schema to support the schema evolution.

• More concise binary format (no field tags).

• Wider support in various Apache Big Data tools.

Schema Registry Pattern

Index

2. validate
compatibility

key schema Id serialized value

Table

7. deserialize
data

(…)

.

.

.

1. register writer schema

3. schema compatible

6. read and cache writer
schema

4. write data 5. read data

Schema Registry

Database

Summary

2. 3.1.

We have discussed:

The available data

models for NoSQL

databases

The implementation

details of MongoDB,

Apache HBase,

Apache Cassandra

and Aerospike

databases.

The data formats,

schema evolution

and the schema

registry pattern.

Thank you.

Piotr Jaczewski

