
04.03.2024

Data storage
in distributed

systems - part I

RTB HOUSE
Tomasz Gintowt

Community

In this part of the course we will consider

the topic of data storage technologies for

data intensive distributed systems.

What will this lecture
be about?

• The common problems with relations

databases in distributed environment.

• The aspects of running a traditional

RDBMS in a distributed system.

We will cover the topics of:

A little bit history

NoSQL

RDBMS

NewSQL

Distributed SQL

A little bit history

Relational Database
Management Systems

Distributed Storage

RDBMS

• Well established flexible data model.

• Stable and battle-proven.

• Powerful Structured Query Language.

• Full support for ACID transactions.

• Swiss army knife - supports most corner cases.

• Well documented.

Why still use RDBMS?

Transactions
The main advantage of using single node
relational databases is the fact that they fully
support the concept of a transaction.

• Atomicity - operations within transaction either completely

succeed or abort.

• Consistency - operations within transaction do not violate

invariants or data integrity.

• Isolation - different transactions do not interfere with

each other.

• Durability - the data has been written to disk (including WAL).

For a distributed system the isolation part is the
most interesting one.

RDBMS as a silo

• Single server

• Very high cost

• 128 CPU, 512 G RAM

• Long mean time between failures

• Long mean time to repair

• SPOF - single point of failure

RDBMS as a cluster

• Multiple servers

• Reasonable cost

• 3 x (64 CPU, 128 G RAM)

• Short mean time between failures

• Short mean time to repair

• High availability

RDBMS as a cluster

• Multiple regions

• Master-Slave replication

• Master-Master replication

• Low latency

• Millions of request per second

• High availability

MySQL
Replication

SF

VASC

Web

MemcacheFiler Web

Memcache

MySQL

Filer

Web

Memcache

MySQL

Filer

MySQL Replication

Memcache proxy

SF

SC VA

San Francisco

Santa Clara Virginia

Cache
sync

Facebook database - MySQL

Skype database - PostgreSQL

Client application

...

...PL / Proxy
partitioning servers

Database
partitions

Procedure calls

Hardware
Distributed Storage

How fast is your disk ?

Picosec Nanosec Microsec Millisec Seconds

100s

100,000s

1,000,000,000s

1000,000,000s

1,000,000s

Processors

PCIe
Flash SSD SATA/SAS

Flash SSD
Hard Disk

Tape

DRAM DIMM

(∿10ns)

(∿100ns)

(∿60µs)

(∿100µs)

Flashtec NVRAM DRIVE

• 10 Million IOPS in Memory Mapped Access,

1 Million IOPS (45KB) as Block Device

• Connected directly to host to optimize CPU

utilization and maximize system performance

• Sub-microsecond latency

Hardware
Architecture
for RDBMS
• With rotational media in DAS (Direct Access

Storage) configuration the latency of the storage

device is the performance bottleneck in RDBMS

applications. To mitigate use the RAID 10 (1 + 0)

configuration.

• In this configuration the striped data is additionally

mirrored for better fault tolerance.

• RAID capabilities can be either provided by system

software or dedicated hardware controllers.

RAID 1 RAID 1

RAID 0

Rotational
Media

• With solid state media in DAS (Direct Access

Storage) configuration, the devices connected

directly to the PCI Express bus are no longer the

performance bottleneck.

• In this scenario the usual configuration is to use

RAID 1 for drive redundancy.

RAID 1

Solid State
Drivers
(NVME)Hardware

Architecture
for RDBMS

• The data storage for database can be also

accessed via SAN.

• Not as efficient as directly accessed storage.

• Many vendors offer custom proprietary solutions.

• Offers more flexibility regarding storage

management.

Server

Storage Area
Network

Disk Array

SAN
Switch

Fibre
Channel

Hardware
Architecture
for RDBMS

Replication
Distributed Storage

Typical RDBMS Process

Replication
process

Client
Application

DB process

Async
Writer

Transaction
log

DB
Files

Cache

log records

commits

cached data

changes

dataSQL

persisted data

replicate

Typical Architecture Involving RDBMS

M
as

te
r

Re
pl

ic
a

1

Re
pl

ic
a

2

Re
pl

ic
a

N

Cache

read only

read only
re

ad
 /

w
rit

e

RDBMS Replication

M
as

te
r

Re
pl

ic
a

1

M
as

te
r

Re
pl

ic
a

1

1. Write

4. Ack

1. Write

2. Ack

2. Replicate

3. Ack

3. Replicate

4. Ack

Synchronous

Asynchronous

Multi-Master Replication

• Adds complexity.

• Unsupported natively by

RDBMSes.

• Inevitable conflicts with

non-trivial methods of resolution

M
as

te
r

M
as

te
r

M
as

te
r

M
as

te
r

read / write

read / write

re
ad

 /
w

rit
e

replicate

. . .

Custom Cross-DC Replication - Architecture

Master Master DC Replica 1 Replica N

streaming replication

Changes
Replicator

Consume
changes

Changes
Streamwrite changes

write changes

Publish
changes

• Logical replication - changes are published

in a defined message format and are

applied by subscriber nodes.

• File System (Block Device) Replication -

all changes to a file system are mirrored

to a file system residing on another

computer.

• Log Shipping - copying completed WAL

segments, better resource utilisation,

higher risk of reduced durability (lost

changes).

• Log Streaming - sending individual WAL

entries over an open connection, higher

resource utilisation, lesser risk of reduced

durability.

• SQL replication - possible inconsistent

results between replica nodes (ie NOW()

function yields different results).

An (incomplete) selection of possible methods:

RDBMS Replication

Cascading replication - follower nodes cascade changes to other followers.

Custom solution - when replicating between DC’s:

• Allow only aggregates in database - denormalization with JSON columns.

• Force applications that mutate data to post aggregated changes on queue system.

• Feed “followers” on target DC’s from queues (Kafka).

• Run checkers to fix consistency issues .

• The performance of replication lag consumption is scalable (more change consumers)

Replication adds additional burden to primary node with growing number of follower nodes.

Replication Burden

Challenges
Distributed Storage

Where is
Master?

Where is Master ?

• Additional layer PROXY or

• Load balancer with Virtual IP.

• Service Discovery with DNS.

• Dedicated tool like ProxySQL or PgPool-II.

• All DML queries should go to Master.

M
as

te
r

M
as

te
r

Re
pl

ic
a

appoint new master

replicate

Connection
pooling

• Internally by an instance of the application.

• By a centralized component.

SELECT queries on RDBMS may be distributed

among several replicas for load balancing

reasons, whereas write queries are usually

distributed to the master node.

Load Balancing and Connection Pooling

Establishing connections to a database can be

expensive so it is a good idea to set a pool of

connections and reuse them.

Both load balancing and connection pooling

can be achieved in two ways:

1.svg

Load Balancing

Network
Load
Balancer

1.svg

Connection Pooling

M
as

te
r

Re
pl

ic
a

1

Re
pl

ic
a

2

Re
pl

ic
a

N

Cache

read only

read only
re

ad
 /

w
rit

e

10 000

1000 1000 1000 1000

High
Availability

MANUAL
the new master has to be

promoted manually by system’s
operator. This will usually mean

partial unavailability
for a RDBMS.

RDBMS Failover
When the primary database fails and needs to be

replaced by one of the replica nodes.

AUTOMATIC
the database cluster

manager will automatically
promote new master

from the set
of available replicas

MTTR
Mean Time
To Repair

RDBMS High Availability
Failure Is Just Part of the Game

MTBF
Mean Time

Between Failures

t

RDBMS High Availability

Correct behavior Diagnose Repair Correct behavior

First
Failure

Second
Failure

Begin
Repair

End
Repair

MTBF

c

RDBMS Failover

M
as

te
r

M
as

te
r

Re
pl

ic
a

appoint new master

replicate

Master
Coordinator

CoordinatorCoordinator

Virtual IP

Scaling

c

RDBMS Scaling

VS

RDBMS Vertical Scaling
How to scale the RDBMS vertically with
losing as little availability as possible?

• CPU, RAM - these are hot swappable elements in the

high-end server equipment.

• Increasing disk capacity - in some SAN solutions this can be

done with zero downtime by adding/replacing disks.

• On commodity hardware it usually requires short downtime

or partial unavailability (read only mode).

RDBMS Vertical Scaling
In case of commodity servers the exemplary
strategies to scale capacity can be used:

1. Add new disk to the system and expand the current

logical volume and resize the filesystem online.

2. Replace the existing logical volume:

• Add new disk and create new logical volume.

• Synchronize the data between the old

and new logical volumes.

• Disable database for a short moment and

replace the volumes.

• Re-enable the database.

By using Logical Volumes:

RDBMS Vertical Scaling
In case of commodity servers the exemplary
strategies to scale capacity can be used:

• Add new machine with desired new capacity

(and other specification).

• Configure it as a replica and let it synchronize

with the master.

• Wait for the replica to fully synchronize

and promote it to leadership.

By adding a new replica:

RDBMS Horizontal Scaling (Sharding)

M
as

te
r 1

M
as

te
r 2

M
as

te
r 3

M
as

te
r N

re
ad

 /
w

rit
e

. . .

select * from table

select * from table

select * from table

select * from table

M
as

te
r 1

M
as

te
r 2

M
as

te
r 3

M
as

te
r N

re
ad

 /
w

rit
e

. . .

select * from table_1

select * from table_2

select * from table_3

select * from table_N

Coordinator

select * from table

RDBMS Horizontal Scaling (Sharding)

RDBMS Horizontal Scaling (Sharding)

Citus worker1 Citus worker2 Citus workerN

E1 E3’ E2 E1’ E3 E2’

events

Citus Coordinator Application

https://docs.citusdata.com/en/v7.0/aboutcitus/introduction_to_citus.html

https://docs.citusdata.com/en/v7.0/aboutcitus/introduction_to_citus.html

RDBMS Horizontal Scaling

tablet 1 - leader

tablet 1 - leader

tablet 2- leadertablet 2 - follower
tablet 3 - follower

tablet 1 - follower
tablet 2 - follower

tablet 1 - follower

tablet 3- follower
. . .

. . .

. . .

node 1

node 3

node 2

Automated Sharding & Load
Balancing

YCQL YEDIS YCQLBETA

Cassandra-compatible Redis-compatible PostgreSQL-compatible

YugaByte Query Layer (YQL)

Distributed Transaction Manager

https://www.yugabyte.com/blog/ysql-architecture-implementing-distributed-postgresql-in-yugabyte-db/

https://www.yugabyte.com/blog/ysql-architecture-implementing-distributed-postgresql-in-yugabyte-db/

RDBMS Horizontal Scaling

reads / writes reads reads / writes reads / writes

Binlog
dump
thread

Slave
SQL

thread

wsrep APIwsrep APIMaster Slave

Slave IO
thread

Galera group
communication

MySQL Replication Galera

RDBMS Horizontal Scaling

Application Application Application

MySQL
Node 3

MySQL
Node 2

MySQL
Node 1

Galera wsrep Replication
192.168.0.1 192.168.0.2 192.168.0.3

192.168.1.11 192.168.1.12 192.168.1.13

192.168.1.22192.168.1.21

192.168.1.99

VIP VIP

HAProxy 1 HAProxy 2

keepalived

RDBMS Horizontal Scaling

Primary Replica

Primary
Replica

Replica

Patroni
Patroni

PatroniNode A
Node B

Node C

MANAGES
MANAGES

MANAGES

Raft consensus for election of
primary database

Streaming replication

Load balancer

User

Performs periodic health
checks on each node
using the Patroni API

Patroni architecture

Original Table

Customer
ID

First
Name

Last
Name

City

1 Alice Anderson Austin

2 Bob Best Boston

3 Carrie Conway Chicago

4 David Doe Denver

RDBMS Shards/Partitions

Vertical Shards Horizontal Shards

Customer
ID

First
Name

Last
Name

1 Alice Anderson

2 Bob Best

3 Carrie Conway

4 David Doe

Customer
ID

City

1 Austin

2 Boston

3 Chicago

4 Denver

Customer
ID

First
Name

Last
Name

City

1 Alice Anderson Austin

2 Bob Best Boston

Customer
ID

First
Name

Last
Name

City

3 Carrie Conway Chicago

4 David Doe Denver

Range based –
each partition/shard allocates rows
with keys in a specified range
of sharding key values:

RDBMS Shards/Partitions

Hash based –
rows are distributed according
to some hashing function applied to
the sharding key:

• Range read queries can be satisfied
from a single partition/shard.

• Writes may be bottlenecked due to
operations on one partition.

• Tendention to introduce hot spots

• Range read queries involve all
partition/shards.

• Even distribution of records.

RDBMS Horizontal Scaling (Partitioning)

Partitioned Table

Partitions

people_partitioned_
birthdays_1800_to_1

850

people_partitioned_
birthdays_1850_to_1

900

people_partitioned_
birthdays_1900_to_1

950

people_partitioned_
birthdays_1950_to_2

000

people_partitioned

INSPIRATION

Summary
We have discussed:

• The aspects of replication, load balancing,

high availability of RDBMS.

• Modern architecture of RDBMS.

• Common challenges.

Thank you.

Tomasz Gintowt

