
INSERT DATE HERE

Monitoring and observability
of distributed systems

RTB HOUSE
Michał Kalisz

https://mimuw.rtbhouse.com

Why is it worth to
monitor systems?

• To have visibility of all hardware and

software components

• To prevent from system incidents, faults or

outages

• To be capable to find cause of problem

• To predict system growth

• To reduce manual effort

INTRODUCTION

Introduction
Real world outage example.
AWS 07.12.2021 - one of regions went down

• From 7:30 AM PST to 2:25 PM PST

• https://aws.amazon.com/message/12721/

• unexpected behaviour from a large number of clients inside the internal network

• persistent congestion and performance issues on the devices connecting internal and main AWS network

• This congestion immediately impacted the availability of real-time monitoring data for our internal operations

teams, which impaired their ability to find the source of congestion and resolve it.

• Limited communication:

➢ Our Support Contact Center also relies on the internal AWS network.

➢ Service Health Dashboard (after 1 hours first information in status dashboard was visible)

https://aws.amazon.com/message/12721/

Introduction
Other examples

Knight

Knight Capital's software went out and bought at the "market",

meaning it paid ask price and then sold at the bid

price--instantly. Over and over and over again. One of the

stocks the program was trading, electric utility Exelon, had a

bid/ask spread of 15 cents. Knight Capital was trading blocks of

Exelon common stock at a rate as high as 40 trades per

second--and taking a 15 cent per share loss on each round-trip

transaction. As one observer put it: "Do that 40 times a second,

2,400 times a minute, and you now have a system that's very

efficient at burning money".

More: https://www.cse.psu.edu/~gxt29/bug/softwarebug.html

Air-Traffic Control System in LA Airport

The controllers lost contact with the planes when the main

voice communications system shut down unexpectedly. To

make matters worse, a backup system that was supposed to

take over in such an event crashed within a minute after it was

turned on. The outage disrupted about 800 flights across the

country.

Cause: Inside the control system unit is a countdown timer that

ticks off time in milliseconds. The VCSU uses the timer as a

pulse to send out periodic queries to the VSCS. It starts out at

the highest possible number that the system's server and its

software can handle—232. It's a number just over 4 billion

milliseconds. When the counter reaches zero, the system runs

out of ticks and can no longer time itself. So it shuts down.

https://www.cse.psu.edu/~gxt29/bug/softwarebug.html

Introduction

Observability

Observability is the ability to measure a system’s

current state based on the data it generates,

such as logs, metrics, and traces.

Monitoring

Monitoring is the systematic process of collecting,

analyzing and using information to track a project’s

progress toward reaching its objectives and to

guide management decisions.

Monitoring tells you whether the system works.

Observability lets you ask why it's not working.

Baron Schwarz

https://orangematter.solarwinds.com/2017/09/14/monitoring-isnt-observability/

Introduction

Introduction

Anticipating the future

Dependency analysis

Profiling

Debugging

Overview

Alerting

Observability
reactive

Monitoring
proactive

Monitoring
& Observability

TracingLogsMetricsHealth checks

Health checks
• Verify if service is capable to operate, ie. to handle

request?

• This can be achieved by answering the following

questions:

o Is service running

o Has connection to database

o Dependent services are healthy

Health checks

Service dependencies

What health status should have services A, B, D ?

UnhealthyHealthy

Service B

Service A

Service B

Service E

Service D

DBDB

Health
checks
Service status –
pull vs push

service / registry registry

Service Service

/heath

how are you? I am healthy

Metrics
Metrics groups:

• System metrics

• Service metrics

• Business metrics

Business metrics

Number of transactions Revenue

Application metrics

TrafficSaturationsError ratesLatency

System metrics

Disk spaceMemory usageIOPSCPU Load


`````

Metrics

Saturation

How "full" your 
service is

Errors

The rate of requests 
that fail

Traffic

A measure of how much 
demand is being placed 

on your system

Latency

The time it takes to 
service 

a request

“Four Golden Signals” for systems monitoring



Service metrics 

service level 
indicators (SLIs)

a measure of the service 
level provided by a service 

provider to a customer

service level 
objectives (SLOs)

a target value or range of 
values for a service level that 

is measured by an SLI.

service level 
agreements (SLAs)

an explicit or implicit contract 
with your users that includes 

consequences of meeting 
(or missing) the SLOs they 

contain



Counter Gauge Histogram Timers Meters

Monitoring metrics types 
(for dropwizard)



Monitoring 
metrics types - 
Gauge / Counter
• Gauge - represents a single numerical 

value Examples:

o Memory usage

o Processing queue size

• Counter - enable to increase / decrease / 

reset value Examples:

o Errors counter

o Completed tasks



Monitoring 
metrics types - 
Histogram
A Histogram measures the distribution 

of values in a stream of data.

Measures:

• minimum, maximum, mean

• median, 75th, 90th, 95th, 98th, 99th, and 99.9th 

percentiles.



Monitoring 
metrics types - 
Meter
Meters - measures the rate at which 

a set of events occur. 

• Average rates:

o Service entire lifetime

o the 1-, 5-, and 15-minute moving averages.

• Examples:

o When average is enough - Like unix top tool

o Processed events 



`````

Monitoring metrics types
Timer

A timer is basically a histogram of the duration of a type of
event and a meter of the rate of its occurrence.

• Passive (push)

• Components:

o Carbon - listen, process,

aggregate data

o Whisper - storage

o Graphite-Web -

GUI & API for rendering graphs

and dashboards

• Client-side aggregation:

o dropwizard / micrometer

library on client side

• Server-side aggregation:

o Statsd - single

metric aggregation

carbon-c-relay Whisperdropwizard

carbon-c-relay Whisperstatsd

App 1
statsd client

App 1 graphite

graphite

• Active (pull)

• the main Prometheus server which

scrapes and stores time series data

• client libraries for instrumenting

application code

• a push gateway

• an alertmanager to handle alerts

Short-lived
jobs

push metrics
at exit

Pushgateway

pull
metrics

Jobs/
exporters

Prometheus
targets

Retrieval TSDB HTTP
server

discover targets

Service discovery

file_sd

Node HDD/SSD

PromQL

pull
alerts

Alertmanager

Prometheus
alerting

Email

etc
notify

Prometheus
server

Prometheus
web UI

API clients

Provides details

about unexpected

or inconsistent

event

Can provide

processing result

for debug

purposes

Should be

meaningful

Logs structure

2023-03-23 19:09:01,048 [thread-24] ERROR timed out

2023-03-23 19:09:01,048 [thread-24] ERROR cannot find resource

Logs structure

For single node application - what data should be added to logs?

● Timestamp

● Level of message

● Name of service

● Request ID

● Message

● User / principal ID

Logs structure
• For single node application - what we expect to do with logs?

o Easy access - defined path / place to look for

o Enable filter / search

o Enable to group

• In many case simple unix command line tools would be enough

o grep, tail/head, sed/awk, sort, uniq etc.

Logs structure
• For distributed systems, microservices architecture etc.

o Centralized- one place to access logs from many applications

o Enable to filter / search

o Enable to group

o Enable to correlate events between services

Logs structure
Extended logs information:

● Timestamp

● Level of message

● Name of service

● Request ID

● Message

● User / principal ID

● Application version (commit hash)/

runtime env. / docker img?

● Node name, DC/region name

● Correlation ID

Logs centralization
rsyslog

How gather data in one place?

• Application creates a standard file in

local file system with some log

rotation (build-in or external (i.e.

logrotate)),

• Rsyslog sends logs from local to

central node

• Global logs in central

DC X

App 1

App 2

App 3
rsyslog

rsyslog

rsyslog

rsyslog

Host A

Host A

DC Log Host

DC Log Host

DC Y

Central DC

rsyslog

Logs centralization
ELK

ELK stack:

• Beats

• Logstash

• Elasticsearch

• Kibana

https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html

https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html

Logs centralization
ELK

• Read logs by FileBeats

• Optionally Buffered

• Optionally parse by Logstash

• Results saved in Elasticsearch

• Read and visualized in Kibana

BufferFileBeats

Logs centralization
Grafana Loki

• Promtail is an agent which ships

the contents of local logs to

a Grafana Loki instance

• Loki provides Push API

• Input:

o Messages streams with labels

• Labels are indexed.

Expected low cardinality

other Agent

Promtail

Promtail
Loki

node A

node B

logs

logs

datasource

Tracing

A trace is a representation of

a series of causally related

distributed events that encode

the end-to-end request flow

through a distributed system.

Request retrieved to response sent – 200 ms

A – 30 ms

B – 140 ms

D – 40 ms

A – 30 ms

time

Tracing

What we would like to trace?

• End user request from start to end

• Call function A (span)

• Call remote service B, D

(distributed tracing)

• Asynchronous call function C

• Connect all events in one trace.

Request retrieved to response sent – 200 ms

A – 30 ms

B – 140 ms

D – 40 ms

A – 30 ms

time

Tracing
• To fully track distributed services it is necessary to “instrument”:

o Libraries

o Frameworks

o Dependent services

• Impact on performance should be measured - especially for high

performance services

• It can be hard for legacy systems

• No all languages are supported

Tracing API
• OpenTelemetry as open,

vendor-agnostic API and

set of tools

• OpenTelemetry Collector:

o Receives Tracing data

o Process it

o Export to External tools - most

often APM

Service A Service B Service C

Collector

call service B API call service C API

traceld: 4
spanld: 4

traceld: 4
spanld: 8

not
instrumented

Application Performance Managment

Postmortems
After an outage occur, postmortems should be treated

as learning opportunity

• incident is documented

• root cause(s) are well understood

• reduce the likelihood and/or impact of recurrence

• blameless: focus on identifying the contributing causes

of the incident

https://sre.google/sre-book/postmortem-culture/

https://sre.google/sre-book/postmortem-culture/

Summary
What observability technologies* does your group use?

*Respondents could pick multiple technologies

How many observability technologies are you using?

source: https://grafana.com/observability-survey/

https://grafana.com/observability-survey/

Links

SRE Books
https://sre.google/books/

Prometheus
https://prometheus.io/docs/introduction/overview/

Graphite
https://graphite.readthedocs.io/en/latest/

Distributed Systems Observability book
https://www.oreilly.com/library/view/distributed-systems-observability/9781492033431/ch04.html

https://sre.google/books/
https://prometheus.io/docs/introduction/overview/
https://graphite.readthedocs.io/en/latest/
https://www.oreilly.com/library/
http://www.oreilly.com/library/
https://www.oreilly.com/library/view/distributed-systems-observability/9781492033431/ch04.html

Links

Prometheus + Grafana demo
https://grafana.demo.do.prometheus.io

Elastic search demo
https://demo.elastic.co/

Grafana (many datasources)
https://play.grafana.org/

https://grafana.demo.do.prometheus.io
https://demo.elastic.co/
https://play.grafana.org/

Thank you.

Michał Kalisz

