RTBHOUSE =

13.05.2024

Jarostaw Rzesz«
RTB HOUSE

RTBHOUSE =

What is load balancing?

Process of distributing traffic among many servers
capable of handling it.

Two purposes:

Availability

RTBHOUSE =

What is load balancing?

Process of distributing traffic among many servers
capable of handling it.

Two slightly different application contexts:

Load balancing incoming traffic from end users to client-facing app servers
(traffic comes from a web browser)

Load balancing traffic between app servers and other services inside the datacenter(traffic comes
from a Java/Python/Go/C++/... programmable client)

RTBHOUSE =

DNS Round Robin
load balancing

Put multiple IP addresses in DNS A DN
records for the domain,
e.g. Xxyz.com

retu

RTBHOUSE =

DNS Round Robin

load balancing

What will a browser do
when attempting to connect xyz.co

* [t will get the list of IPs from a DNS server
and try to connect to the first IP

* Aslong as all servers in the list of IPs

the servers

are up you get some load distribution among

If one of
wait unti
next IP -

RTBHOUSE =

DNS Round Robi
load balancing

What will a programmatic client do
connecting to xyz.com?

For example a Python program like t
import requests
requests.get(“https://www.xyz.com

RTBHOUSE =

Aside: layers in the software stack

Where can functionality like DNS resolution reside?
import requests requests.get(“https://www.xyz.com?)

Python interpreter could contain full code necessary to do DNS resolution,
but it could also do a ??? or use a function from the 77?7 library

Tip: what are the Python interpreter, Java VM and many other language interpreters and VMs all
written in?

RTBHOUSE =

What will a programmatic client do
when connecting to xyz.com?

It will call getaddrinfo() from the C standard
library (typically glibc) which will sort
the IP list by network “nearness”

Unless you manually program resolving the
domain name to full IP list and pick an IP
at random, your program will always use

the same, nearest IP

Makes DNS round robin poor also
for inside-DC load balancing,
unless you sure you can control the
DNS resolution code

https://daniel.haxx.se/blog/2012/01/03/getad
drinfo-with-round-robin-dns-and-happy-eyeb

alls/

https://daniel.haxx.se/blog/2012/01/03/getaddrinfo-with-round-robin-dns-and-happy-eyeballs/
https://daniel.haxx.se/blog/2012/01/03/getaddrinfo-with-round-robin-dns-and-happy-eyeballs/
https://daniel.haxx.se/blog/2012/01/03/getaddrinfo-with-round-robin-dns-and-happy-eyeballs/

HOUSE

Hardware load balancers

RTBHOUSE =

Dedicated

load balancers

* Software load balancers - application
running on one or more servers

* Can health check application servers and
stop sending traffic to unhealthy servers

Can keep requests from the same client
sticky to the same application server

dh>

1.2.3.4

Hostname (Unicast)

TCP conn

TCP conn
O TCP conn

- D TCP conn

TCP conn

Se=Ir

TCP conn TCP conn

—
: App

Server

Clients establish TCP connections
to the LB

LB establishes TCP connections
to backends

Load balancing algorithm operates
at connection establishment time

dh>

1.2.3.4

Hostname (Unicast)

TCP conn

TCP conn
O TCP conn

- D TCP conn

TCP conn

TCP conn TCP conn

V.

App
Server

LB copies data from client connection
to associated server connection

In a plain TCP proxy,
the proxy does not parse the TCP

stream contents

RTBHOUSE =

Layer 4 load balancing - “proxy”

Examples:

AWS: Network Load Balancer (Elas’uc Load Balancmg)

Google Cloud: TCP Proxy
https://cloud.gooqgle.com/load-balancing/docs/tc

HAProxy (one of possible load balancing modes)
https://www.haproxy.org/

Nginx (one of possible load balancing modes)
https://nginx.org/en/docs/

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://cloud.google.com/load-balancing/docs/tcp
https://www.haproxy.org/
https://nginx.org/en/docs/

LI

Hostname

\ 1.2.3.4

(Unicast)
- D

O
V.

App
Server

Variant A:;

1.2.3.4 is the IP of the load balancer

Load balancer performs NAT, rewriting the
destination IP to a selected app server IP

Needs to keep a table of client<->server
associations

Hostname

(Unicast)

10100 =0
1111 =0

App
Server

1000 =0
1110 =0
10100 =0

Variant B:

1.2.3.4 is an anycast IP, used by all the app servers

(on loopback interface)

Load balancer must be in charge of routing 1.2.3.4

Load balancer maps

(client IP, client port,

server IP, server port,

TCP/UDP) to specific app server
via a hash function

RTBHOUSE =

Layer 4 load balancing - “pass-through”

Examples:

AWS: Gateway Load Balancer (Elastlc Load Balancmg)

Google Cloud: External TCP/UDP Network Load Balancing
https://cloud.google.com/load-balancing/docs/network

Google Cloud: Internal TCP/UDP Network Load Balancing

https://cloud.google.com/load-balancing/docs/internal

Kubernetes kube-proxy load balancing:
hitps://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/

Linux Virtual Server:
http://www.linuxvirtualserver.org/

https://docs.aws.amazon.com/elasticloadbalancing/latest/gateway/introduction.html
https://cloud.google.com/load-balancing/docs/network
https://cloud.google.com/load-balancing/docs/internal
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/
http://www.linuxvirtualserver.org/

LI

QL

1.2.3.4

Hostname (Unicast)

TCP conn

TCP conn
O TCP conn

+——>

— TCP conn Clients establish TCP connections to the LB

+——>

LB establishes TCP connections to app server
TCP conn

No permanent association between:
TCP conn TCP conn

— D client<->LB conn.
App &

Server

LB<->app-serer conn.

H 1.2.3.4
SEUIE U (Unicast)

O TCP conn

+——>

TCP conn

+——>

TCP conn
o

—

TCP conn

TCP conn

TCP conn

10100 =0
1100 =0
10100 =0

1000 =0
1111 =0
11010 =0

App
Server

Load balancing algorithm operates when a
(part of) request arrives over the client<->LB
TCP connection

LB parses the L7 protocol operating over TCP
stream,

can make decisions based on HTTP request
method, path etc.

RTBHOUSE =

Layer 7 load balancing - “reverse proxy”

Examples:

AWS: Appllcatlon Load Balancer (Elastlc Load Balancing)

Google Cloud: External HTTP(S) Load Balancing
https://cloud.google.com/load-balancing/docs/https

Google Cloud: Internal HTTP(S) Load Balancing
https://cloud.google.com/load-balancing/docs/I7-internal

HAProxy (one of possible load balancing modes)
https://www.haproxy.org/

Nginx (one of possible load balancing modes)
https://nginx.org/en/docs/

https://aws.amazon.com/elasticloadbalancing/application-load-balancer/?nc=sn&loc=2&dn=2
https://cloud.google.com/load-balancing/docs/https
https://cloud.google.com/load-balancing/docs/l7-internal
https://www.haproxy.org/
https://nginx.org/en/docs/

RTBHOUSE =

Layer 7 load balancing - “reverse proxy”

Examples:

Envoy
https.//www.envoyproxy.io/

Traefik

https://traefik.io/

https://www.envoyproxy.io/
https://traefik.io/

RTBHOUSE =

Server side layer 7 |
balancing

How to select a server for the incoming
Things to consider:

Requests can take
varying amount
of time to process

RTBHOUSE =

Server side layer 7 |
balancing

Weighted round robin algorith

Servers “take turns”
handling requests

RTBHOUSE =

Server side layer 7 |
balancing

Weighted least connections algorit

Select the server that has Least number of active
the least number of active connections == least requests

connections “in progress”

RTBHOUSE =

Server side layer 7 |
balancing

Consistent hashing algorithm

Hash the client IP onto
one of the servers

RTBHOUSE =

Server side layer 7 |
balancing

Features: TLS termination

Often the layer 7 proxy terminates TLS:
connections from client to proxy are encrypted
HTTP/1.1 or HTTP/2.0 connections, connections
from proxy to backends are unencrypted
HTTP/1.1 connections

at handling
are fewe

RTBHOUSE =

Server side layer 7 |
balancing

Features: HTTP routing

Since a layer 7 proxy parses HTTP con
it can decide which server to use ba
on request method, request path,
headers, client IP etc.

RTBHOUSE =

Server side layer 7 |
balancing

Features: rate limiting

Layer 7 proxies can rate limit connectio
requests/s to protect from DoS attacks
provide user quotas etc.

RTBHOUSE =

Server side layer 7 I«
balancing

Features: health checking

We do not want to send requests to backends Two (
that will not be able to service client requests

correctly

RTBHOUSE =

Server side layer 7 Ic
balancing

Active health checking:

Send HTTP request every
X seconds

Server side layer /7 load

On the TCP level: when enough
connection attempt fails,
consider the server unhealthy,
stop directing traffic to it

balancing

Passive health checking:

On HTTP level: when enough
HTTP requests fail, consider the
server unhealthy

Server gets healthy again when
active health check passes

Need to have a list of
available application
servers

Server side layer /7 load
balancing

Features: service discovery

Naive solution: just Problem: hard to
have a list of IP add/remove
addresses in programmatically from
configuration file configuration file

Problem: configuration
file reload often
requires proxy restart
(which terminates
connections), frequent
restarts might
destabilize the DC

Example of a better
solution:
have the proxy resolve
a DNS nameto get a
list of servers

Server side layer /7 load
balancing

Features: service discovery

DNS supports SRV Proxy can periodically
records: poll DNS, refresh the
_service. proto.n SRV records and
ame. ttl IN SRV update the server list
priority weight without terminating

port target client connections

Platform administrators
can
add/remove/reconfigure
servers by doing DNS
updates

Server side layer 7 load
balancing

Having a single layer 7 load balancer
has two major shortcomings:

Performance ceiling: eventually a single load Single point of failure: if the load balancer fails,
balancer will saturate and will not be able to the service will become unavailable

serve any more traffic

RTBHOUSE =

“

Hostname

>

L

1.2.3.4
(Unicast)

App
server

1000 S0
1000 =0
1110 =0

Router Router

AS123 (ISP of user)

Datacenter

Load DC
balancer EDGE

Router Router Router

AS456 AS789 (ISP for DC)

RTBHOUSE =

Unicast

delivers a message to
a single specific node

IP Anycast
to the rescue

IP protocol provides four adressing m

Broadcast

delivers a message to
all nodes in the
network using a

one-to-all association

Multica

delivers a me
a group of no
have expresse
in receivin
messa

RTBHOUSE =

Anycast can be

implemented via

Border Gateway
Protocol (BGP)

Multiple hosts are
given the same
unicast IP address
and different routes
to the address are
announced through
BGP.

Routers consider
these to be
alternative routes to
the same destination,
even though they are
actually routes to
different destinations
with the same
address.

As usual, routers
select a route by
whatever distance
metric is in use (the
least cost, least
congested, shortest).
Selecting a route in
this setup amounts to
selecting a
destination.

RTBHOUSE =

/ Datacenter in EU \
/ AS999 (RTB House)\
App Load balancer
server 1.2.3.4 DC

—] EDGE
@ Router
(11s0)

1110 =0 t
— \) o :
DNS = TI1

111 S0 ._J._]._J‘_J

App Load balancer
\ server 1234

/
O AL | AL L)

TCP/UDP
D Router Router Router Router Router

1.2.3.4
(Anycast)

Hostname

AS123 (ISP of user) AS456 AS789 (DC ISP)
(Some ISP)

_ 2 AN

RTBHOUSE =

Anycast-based inside-
load balancing |

Edge router supports
ECMP: Equal Cost Multipath

When multiple routes are available for an IP, has
TCP/UDP flows
to different available routes

Flows are identified by the four tupl
(source IP, source port, destination IP, destin

RTBHOUSE =

Global load balanci

Problem:

For two given geographic locations
of client and server,

Round trip time has a physical lower li
given by speed of light

RTBHOUSE =

Global load balancil‘

Speed of light in wvacuum: 300
Speed of light in optical fiber: 200
Distance from Warsaw to Amsterdam: 1

1 100 000 m / 200 000 000 m/s = 0.0055

2 * 5.5 ms = 11 ms best-case round tri

RTBHOUSE =

@ms @D

7

24ms
(36ms_ D)

AY 7z
AY ’ 4

88ms (A Oms S
-\ \ °' 36ms 0% loss

104ms : oms @A) . 55ms

\

9
(145ms D). 9'/ 1mms CID)----- o °o ; Q-
(42ms CED) 251ms

\Q \\\\o
o @) ° Q. N 1
9 9 ° (uem @D ’ 73ms Q @
17ams B A o 35ms \)
‘ ’ m 6 | S %
, s o0ss 9 ~Q Q 258ms

~

202ms @D (ri7ms (ooms @D R
9,/’,/ 122ms 9 236ms

.
-,

(244ms @D
(208ms @A)
(190ms @D, ¢ - _A(72ms A (256ms CID)

-
-

0] Q.- 0

N
\

(279ms @D

https://tools.bunny.net/latency-test?query=creativecdn.com

https://tools.bunny.net/latency-test?query=creativecdn.com

RTBHOUSE =

Global load balanci

Need to place servers within
reasonable geographic distan
to users

RTBHOUSE =

/ Datacenter in EU /Datacenter in US
/ AS999 (RTB House)\ AS1000 (RTB House) \
App Load balancer
server 1.2.3.4 DC DC

— 0 EDGE EDGE
w% Router Router
(nnso)

1i=o)

DNS e T DNS

1000 S0

111 S0 ._‘]._‘]._‘J._‘]

App Load balancer
server 1.2.3.4

1.2.3.4 1.2.3.4
Hostname (Anycast) 4 (Anycast)

(0) - b (o
D TCP/UDP OUtr P

User in EU User in US
AS123 AS223

(ISO of EU user) (ISP of US user)

- J - J

RTBHOUSE =

Anycast-based global load balancing

Available as a cloud service:

AWS: Global Accelerator
https://aws.amazon.com/global-accelerator/

Google Cloud: Global external HTTP(S) load balancer
https://cloud.google.com/load-balancing/docs/https/

https://aws.amazon.com/global-accelerator/
https://cloud.google.com/load-balancing/docs/https/

HHHHH

Thank you.

Jarostaw Rzeszotko

