
13.05.2024

Load balancing

RTB HOUSE
Jarosław Rzeszótko

What is load balancing?

Scaling

Availability

Process of distributing traffic among many servers

capable of handling it.

Two purposes:

What is load balancing?

Load balancing incoming traffic from end users to client-facing app servers
(traffic comes from a web browser)

Load balancing traffic between app servers and other services inside the datacenter(traffic comes
from a Java/Python/Go/C++/… programmable client)

Process of distributing traffic among many servers

capable of handling it.

Two slightly different application contexts:

Put multiple IP addresses in DNS A

records for the domain,

e.g. xyz.com

DNS Round Robin
load balancing

DNS server will permute the list

of IP addresses each time

it is queried,

returning the addresses in different

order

DNS Round Robin
load balancing

What will a browser do
when attempting to connect xyz.com?

• If one of the servers is down, browser will

wait until connection timeouts before trying

next IP -> failover is slow

• No easy way to quickly remove a server

from the pool because of DNS caching etc.

• Not great for load balancing client traffic

• It will get the list of IPs from a DNS server

and try to connect to the first IP

• As long as all servers in the list of IPs

are up you get some load distribution among

the servers

What will a programmatic client do when

connecting to xyz.com?

For example a Python program like this:

import requests

requests.get(“https://www.xyz.com”)

DNS Round Robin
load balancing

Aside: layers in the software stack

Python interpreter could contain full code necessary to do DNS resolution,
but it could also do a ??? or use a function from the ??? library

Tip: what are the Python interpreter, Java VM and many other language interpreters and VMs all
written in?

Where can functionality like DNS resolution reside?
import requests requests.get(“https://www.xyz.com”)

DNS Round Robin
load balancing

What will a programmatic client do
when connecting to xyz.com?

• Makes DNS round robin poor also

for inside-DC load balancing,

unless you sure you can control the

DNS resolution code

• https://daniel.haxx.se/blog/2012/01/03/getad

drinfo-with-round-robin-dns-and-happy-eyeb

alls/

• It will call getaddrinfo() from the C standard

library (typically glibc) which will sort

the IP list by network “nearness”

• Unless you manually program resolving the

domain name to full IP list and pick an IP

at random, your program will always use

the same, nearest IP

https://daniel.haxx.se/blog/2012/01/03/getaddrinfo-with-round-robin-dns-and-happy-eyeballs/
https://daniel.haxx.se/blog/2012/01/03/getaddrinfo-with-round-robin-dns-and-happy-eyeballs/
https://daniel.haxx.se/blog/2012/01/03/getaddrinfo-with-round-robin-dns-and-happy-eyeballs/

Dedicated
load balancers

Hardware load balancers

Dedicated
load balancers

• … many features

• If running on just one server, single point of

failure has moved from the app server to the

load balancer - how to deal with this?

• Software load balancers - application

running on one or more servers

• Can health check application servers and

stop sending traffic to unhealthy servers

• Can keep requests from the same client

sticky to the same application server

Layer 4 load
balancing - “proxy”

• Clients establish TCP connections

to the LB

• LB establishes TCP connections

to backends

• Load balancing algorithm operates

at connection establishment time

Load
balancer

1.2.3.4

Hostname
1.2.3.4

(Unicast)

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

App
Server

App
Server

Layer 4 load
balancing - “proxy”

• LB copies data from client connection

to associated server connection

• In a plain TCP proxy,

the proxy does not parse the TCP

stream contents

Load
balancer

1.2.3.4

Hostname
1.2.3.4

(Unicast)

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

App
Server

App
Server

Layer 4 load balancing - “proxy”

AWS: Network Load Balancer (Elastic Load Balancing)
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html

Google Cloud: TCP Proxy
https://cloud.google.com/load-balancing/docs/tcp

HAProxy (one of possible load balancing modes)
https://www.haproxy.org/

Nginx (one of possible load balancing modes)
https://nginx.org/en/docs/

Examples:

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://cloud.google.com/load-balancing/docs/tcp
https://www.haproxy.org/
https://nginx.org/en/docs/

Layer 4 load
balancing –
“pass-through”

• 1.2.3.4 is the IP of the load balancer

• Load balancer performs NAT, rewriting the

destination IP to a selected app server IP

• Needs to keep a table of client<->server

associationsLoad balancer

Hostname
1.2.3.4

(Unicast)

TCP conn

TCP conn

TCP conn

TCP conn

App
Server

App
Server

Variant A:

• 1.2.3.4 is an anycast IP, used by all the app servers

(on loopback interface)

• Load balancer must be in charge of routing 1.2.3.4

• Load balancer maps

(client IP, client port,

server IP, server port,

TCP/UDP) to specific app server

via a hash function

Variant B:

Layer 4 load
balancing –
“pass-through”

Load balancer

Hostname
1.2.3.4

(Unicast)

TCP conn

TCP conn

TCP conn

TCP conn

App
Server

App
Server

Layer 4 load balancing - “pass-through”

AWS: Gateway Load Balancer (Elastic Load Balancing)
https://docs.aws.amazon.com/elasticloadbalancing/latest/gateway/introduction.html

Google Cloud: External TCP/UDP Network Load Balancing
https://cloud.google.com/load-balancing/docs/network

Google Cloud: Internal TCP/UDP Network Load Balancing
https://cloud.google.com/load-balancing/docs/internal

Kubernetes kube-proxy load balancing:
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/

Examples:

Linux Virtual Server:
http://www.linuxvirtualserver.org/

https://docs.aws.amazon.com/elasticloadbalancing/latest/gateway/introduction.html
https://cloud.google.com/load-balancing/docs/network
https://cloud.google.com/load-balancing/docs/internal
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/
http://www.linuxvirtualserver.org/

Layer 7 load
balancing –
“reverse proxy”

• Clients establish TCP connections to the LB

• LB establishes TCP connections to app server

• No permanent association between:

client<->LB conn.

&

LB<->app-serer conn.

Load
balancer

1.2.3.4

Hostname
1.2.3.4

(Unicast)

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

App
Server

App
Server

Layer 7 load
balancing –
“reverse proxy”

• Load balancing algorithm operates when a

(part of) request arrives over the client<->LB

TCP connection

• LB parses the L7 protocol operating over TCP

stream,

can make decisions based on HTTP request

method, path etc.

Load
balancer

1.2.3.4

Hostname
1.2.3.4

(Unicast)

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

TCP conn

App
Server

App
Server

Layer 7 load balancing - “reverse proxy”

AWS: Application Load Balancer (Elastic Load Balancing)
https://aws.amazon.com/elasticloadbalancing/application-load-balancer/?nc=sn&loc=2&dn=2

Google Cloud: External HTTP(S) Load Balancing
https://cloud.google.com/load-balancing/docs/https

Google Cloud: Internal HTTP(S) Load Balancing
https://cloud.google.com/load-balancing/docs/l7-internal

HAProxy (one of possible load balancing modes)
https://www.haproxy.org/

Examples:

Nginx (one of possible load balancing modes)
https://nginx.org/en/docs/

https://aws.amazon.com/elasticloadbalancing/application-load-balancer/?nc=sn&loc=2&dn=2
https://cloud.google.com/load-balancing/docs/https
https://cloud.google.com/load-balancing/docs/l7-internal
https://www.haproxy.org/
https://nginx.org/en/docs/

Layer 7 load balancing - “reverse proxy”

Envoy
https://www.envoyproxy.io/

Traefik
https://traefik.io/

Examples:

https://www.envoyproxy.io/
https://traefik.io/

Server side layer 7 load
balancing

How to select a server for the incoming request?
Things to consider:

Servers can differ

in performance

Requests can take

varying amount

of time to process

Server side layer 7 load
balancing

Weighted round robin algorithm:

Servers “take turns”

handling requests

Server side layer 7 load
balancing

Weighted least connections algorithm:

A request that takes

longer to process will also longer

contribute to the number

of active connections

Select the server that has

the least number of active

connections

Least number of active

connections == least requests

“in progress”

Server side layer 7 load
balancing

Consistent hashing algorithm:

Hash the client IP onto

one of the servers

Server side layer 7 load
balancing

Features: TLS termination

TLS handling is complicated and might require

shared state, layer 7 proxies are typically better

at handling it than application servers and there

are fewer proxies than application servers

Often the layer 7 proxy terminates TLS:

connections from client to proxy are encrypted

HTTP/1.1 or HTTP/2.0 connections, connections

from proxy to backends are unencrypted

HTTP/1.1 connections

Server side layer 7 load
balancing

Features: HTTP routing

Since a layer 7 proxy parses HTTP contents

it can decide which server to use based

on request method, request path,

headers, client IP etc.

Server side layer 7 load
balancing

Features: rate limiting

Layer 7 proxies can rate limit connections/s or

requests/s to protect from DoS attacks or to

provide user quotas etc.

Server side layer 7 load
balancing

Features: health checking

Two (not exclusive) ways to healthcheck:

active and passive

We do not want to send requests to backends

that will not be able to service client requests

correctly

Server side layer 7 load
balancing

Active health checking:

Depending on the response,

server is marked healthy or unhealthy

Send HTTP request every

X seconds

Server side layer 7 load
balancing

Passive health checking:

Server gets healthy again when

active health check passes

On the TCP level: when enough

connection attempt fails,

consider the server unhealthy,

stop directing traffic to it

On HTTP level: when enough

HTTP requests fail, consider the

server unhealthy

Need to have a list of

available application

servers

Naive solution: just

have a list of IP

addresses in

configuration file

Problem: hard to

add/remove

programmatically from

configuration file

Problem: configuration

file reload often

requires proxy restart

(which terminates

connections), frequent

restarts might

destabilize the DC

Features: service discovery

Server side layer 7 load
balancing

Example of a better

solution:

have the proxy resolve

a DNS name to get a

list of servers

DNS supports SRV

records:

_service._proto.n

ame. ttl IN SRV

priority weight

port target

Proxy can periodically

poll DNS, refresh the

SRV records and

update the server list

without terminating

client connections

Platform administrators

can

add/remove/reconfigure

servers by doing DNS

updates

Features: service discovery

Server side layer 7 load
balancing

Server side layer 7 load
balancing

Having a single layer 7 load balancer
has two major shortcomings:

Single point of failure: if the load balancer fails,

the service will become unavailable

Performance ceiling: eventually a single load

balancer will saturate and will not be able to

serve any more traffic

Server side layer 7 load
balancing

Hostname
1.2.3.4

(Unicast)

. . .

Router Router Router Router Router

DC
EDGE
Router

Load
balancer

1.2.3.4

App
server

App
server

Datacenter

AS123 (ISP of user) AS456 AS789 (ISP for DC)

TCP/UDP

Unicast

delivers a message to

a single specific node

Broadcast

delivers a message to

all nodes in the

network using a

one-to-all association

Anycast

delivers a message to

any one out of a

group of nodes,

typically the one

nearest to the source

Multicast

delivers a message to

a group of nodes that

have expressed interest

in receiving the

message

IP protocol provides four adressing modes:

IP Anycast
to the rescue

Anycast can be

implemented via

Border Gateway

Protocol (BGP)

Multiple hosts are

given the same

unicast IP address

and different routes

to the address are

announced through

BGP.

As usual, routers

select a route by

whatever distance

metric is in use (the

least cost, least

congested, shortest).

Selecting a route in

this setup amounts to

selecting a

destination.

Routers consider

these to be

alternative routes to

the same destination,

even though they are

actually routes to

different destinations

with the same

address.

IP Anycast
to the rescue

Anycast-based inside-DC load balancing

Hostname
1.2.3.4

(Anycast)

. . .

Router Router Router Router Router

DC
EDGE
Router

Load balancer
1.2.3.4

App
server

App
server

AS999 (RTB House)

AS123 (ISP of user) AS456
(Some ISP)

AS789 (DC ISP)

TCP/UDP

Load balancer
1.2.3.4

Datacenter in EU

Anycast-based inside-DC
load balancing

Edge router supports

ECMP: Equal Cost Multipath

When multiple routes are available for an IP, hash different

TCP/UDP flows

to different available routes

Flows are identified by the four tuple:

(source IP, source port, destination IP, destination port)

`

Global load balancing

Problem:

For two given geographic locations

of client and server,

Round trip time has a physical lower limit

given by speed of light

Global load balancing

Speed of light in vacuum: 300 000 000 m/s

Speed of light in optical fiber: 200 000 000 m/s

Distance from Warsaw to Amsterdam: 1 100 000 m

1 100 000 m / 200 000 000 m/s = 0.0055 s = 5.5 ms

2 * 5.5 ms = 11 ms best-case round trip

0% loss258ms

0% loss251ms

0% loss95ms

0% loss236ms

0% loss256ms

0% loss279ms

0% loss1172ms

0% loss99ms

0% loss244ms

0% loss173ms

0% loss122ms

0% loss42ms

0% loss36ms

0% loss26ms

0% loss23ms

0% loss24ms

0% loss6ms

0% loss17ms

0% loss208ms

0% loss190ms

0% loss96ms

0% loss146ms

0% loss104ms

0% loss117ms

0% loss145ms 0% loss11ms

0% loss0ms

0% loss202ms

0% loss88ms

0% loss174ms

0% loss118ms

0% loss33ms

https://tools.bunny.net/latency-test?query=creativecdn.com

https://tools.bunny.net/latency-test?query=creativecdn.com

Global load balancing

Need to place servers within

reasonable geographic distance

to users

Anycast-based inside-DC load balancing

1.2.3.4
(Anycast)

AS789
(DC ISP)

Hostname
1.2.3.4

(Anycast)

. . .

Router Router

DC
EDGE
Router

Load balancer
1.2.3.4

App
server

App
server

AS999 (RTB House)

AS123
(ISO of EU user)

TCP/UDP

Load balancer
1.2.3.4

Datacenter in EU

User in EU

DC
EDGE
Router

AS2789
(DC ISP)

AS223
(ISP of US user)

AS1000 (RTB House)

Datacenter in US

User in US

Anycast-based global load balancing

AWS: Global Accelerator
https://aws.amazon.com/global-accelerator/

Google Cloud: Global external HTTP(S) load balancer
https://cloud.google.com/load-balancing/docs/https/

Available as a cloud service:

https://aws.amazon.com/global-accelerator/
https://cloud.google.com/load-balancing/docs/https/

Thank you.

Jarosław Rzeszótko

