
26.02.2024

Practical Distributed
Systems

 Introduction

RTB HOUSE
Piotr Jaczewski

http://mimuw.rtbhouse.com/slides/1.pdf

10m
Requests per second

3000+
Physical servers

6
Datacenters on

3 continents

This course is loosely based on the experiences
derived from the construction of the

RTB advertising platform developed by RTB House.

10+
Petabytes of data

2000+
Customers

2000+
Active ad campaigns

Some Some technical details
Up to

The course will be focused on:

During this course we will
discuss the broad topic of
data intensive distributed
systems.

WHAT THIS COURSE WILL BE ABOUT?

1. The engineering aspects of distributed systems.

2. The design and architecture of distributed systems

components.

3. The operational aspects of running a distributed system.

4. The performance considerations for a distributed system.

Motivation

We must handle ever increasing traffic of thousands and millions of requests

We want to maintain high availability and resilience of the system.

We want to be able to perform maintenance of the system without causing
harm.

We need to build business and applications around modern web.

Under these conditions we want our systems to be
scalable, reliable and reasonably maintainable.

Architecture
During this lecture we will try

to gradually build a generic

architecture for a modern scalable

distributed system and to identify

its components.

Single server
• The basic first approach to the development

of any web based system.

• Mostly represents the Proof of Concept

of a system or early stages of development.

• Simple deployment.

• Suitable for very small applications.

SERVER

DB

Multiple servers
• We want to increase the number of servers

to handle more a little bit more traffic.

• We assume that the architecture of the system

is monolithic and each server handles the same

core functionality.

• The servers have the same hardware capabilities.

• We want to distribute the traffic between

the servers evenly.

• The DNS host name is mapped to multiple

addresses.

SERVER

DB

Load balancing

• We add a dedicated load balancing component.

• We want to have more control over the request

distribution.

• We want to implement the custom request

distribution policy, eg distribute more traffic

to the more capable servers.

• We want to implement simple health checking

functionality which enables the dynamic

addition and removal of machines.

SERVER

DB

LOAD
BALANCER

Data redundancy
• We come to the point where data redundancy

is required to prevent data losses.

• If the master database comes down we want

to easily promote a new master.

• We want to reduce the burden on the master

server by allowing the read requests

to be handled on replica nodes.

SERVER

DB REPLICA REPLICA

…

LOAD
BALANCER

Caching
• As performance reasons become more

important the obvious solution is to introduce

caching.

• Caching might be a separate component like

a Memcached server or caching may be

performed by a server application itself.

• Various caching side effects must be taken into

account, like consistency issues, so adequate

caching strategies must be used not to disturb

normal operations. …

SERVER

LOAD
BALANCER

CACHE

DB REPLICA REPLICA

Cache-Aside

Caching strategies

data missing in cache

upon read is fetched

from source and stored

in cache by the

application.

Read-Through
data is read from cache

layer which

synchronously reads

and stores data from db

if missing

Write-Through
data is always written to

the cache layer which

synchronously stores it

in db.

Write-Back
data is always written to

the cache layer which

asynchronously stores

it in db.

Content Delivery
Networks

• The client sees static media URL referring

to the CDN service.

• The CDN service caches the media content

from the server if not already present.

• The CDN service returns the media content

to the client.

The aim of CDN is to reduce
web tier load by storing static media
on a dedicated caching service.

SERVER

DB REPLICA REPLICA

…

LOAD
BALANCER

CONTENT
DELIVERY
NETWORK

… …

Monolithic architecture

• Easier to develop and test at the beginning.

• Straightforward to deploy.

• Easier to scale if application can be run in multiple
instances.

A state when most of the system

functionality is encapsulated within

a single deployable application:

But inevitably leads to “monolithic hell”:

• Convoluted codebase with tightly coupled modules –
“big ball of mud”.

• Slow and painful development and difficult testing.

Microservices
• At some point it may be reasonable

to abandon monolithic architecture of the

system applications and start transition

to a microservices architecture

• Previous monolithic design is gradually

replaced by a set of well defined loosely

coupled services communicating via APIs

CACHE

LOAD BALANCER

MICROSERVICES

DB R R

Microservices
architecture

• Services are smaller and easier to maintain.

• Services are independently deployable.

• Services are independently scalable.

• Better fault isolation.

The benefits of Microservice architecture:

The drawbacks of Microservice architecture:

• It’s difficult to find right services division.

• Deployment and testing may be more complicated.

• Complex features which span multiple services may
require increased coordination.

Path Value

/service2/192.168.1.100 {“port”: 8080}

/service2/192.168.1.101 {“port”: 8080}

/service2/192.168.1.102 {“port”: 9080}

send requests to
available instances

Service 2 instances

Service 1
instance

listen for
status

updates

update availability status

Service discovery
• Independently scaled services must know

where to find instances of their

dependencies.

• Coordination components like ZooKeeper,

etcd may implement service discovery

pattern.

• Registered instances are given individual

ephemeral nodes.

• Ephemeral nodes disappear on instance

deregistration, lost connection, etc.

Alternative storage
• The introduction of loosely coupled services

enables the use of dedicated data stores

for individual services to further decouple the

data tier.

• These stores can be optimized for a particular

purpose of a particular service.

• Stores may be either dedicated RDMBses

or NoSQL databases.

NoSQL NoSQL
CACHE

LOAD BALANCER

MICROSERVICES

DB R R

Communication
Splitting monolithic architecture into

microservices requires communication

between services:

• Direct synchronous RPC calls:
• REST, SOAP

• gRPC, Thrift, Avro (RPC)

• Synchronous calls via RPC based integration

middleware.

• Asynchronous communication via

message-oriented middleware:

• ActiveMQ, RabbitMQ

• ZeroMQ

• Apache Kafka - Events Streaming Platform

Microservice 1

Microservice 1

Microservice 2

Microservice 2

Microservice 1 Microservice 2Quene/Topic

Synchronous

Asynchronous

Integration
Middleware

Event Driven Architecture

Event - immutable statement of fact that

something happened in the past.

Event Driven Architecture - services can publish

an event message that another service can use

to perform one or more actions in turn.

Event Streaming - services can publish streams

of events to a broker. Consumers can access

each stream and consume their preferred

events, and those events are then retained by

the broker.

NoSQL NoSQL

LOAD BALANCER

MICROSERVICES

Events
Stream

Events
Consumer

Stream processing
• Event consumption may result in emission

of a different kind of event that may

be consumed by a separate consumer.

• Events may be stored in a variety

of datastores for warehousing purposes.

• Or may provide source data for various

kinds of real-time analytics.

Events
Stream

OLAP

Distributed FS

DB with
“real-time” stats

Events
Consumer

Events
Stream

Event schema
• In some scenarios event messages may

be defined with a formal schema.

• Event schema may evolve over time.

• Consumers need to know how

to deserialize messages according

to the schema in which they were

published.

• Schema registry serves information about

available event schemas.

Events
Stream

Producer

Consumer

...

send message
with schema id: 1

read message
with schema

id: 1

properly
deserialized

message

check schema
with id: 1

return schema
with id: 1

Big Data processing
• One of the typical destinations for

streamed events data is to store them on a

distributed FS, like HDFS.

• Data can be further processed by various

tools available within the Hadoop

ecosystem.

• The concept of storing large amount of

data in raw format on a distributed file

system is sometimes called a “Data Lake”.

Events
Stream

Distributed
FS Writer

HDFS Hadoop
YARN

Machine learning
• The raw data on HDFS has to be

transformed by the feature extraction

workflows and stored back for Machine

Learning purposes.

• Usually distinct high-end machines with

GPUs are used for Machine Learning.

• The feature sets are copied to machine

learning servers for performance reasons.

Events
Stream

Distributed FS
Writer

HDFS Hadoop
YARN

Feature
Extraction

write back feature
datasets

read events data

read feature
datasets

write model data

train models

HDFS Machine Learning
Servers

GPUs

Streaming
to Cloud
• Alternatively the events data may

be streamed to the Cloud.

• Fast Querying over large datasets –

BigQuery, Redshift

• Storage - Google Cloud Storage,

Amazon S3

Events
Stream

Cloud Data
Writer

Distributed
logging
• Services write application logs

on the machines where

they are installed.

• It is also useful to stream logging

messages to the central server

(eg. via rsyslogd).

• The logs from the central server

are ingested, indexed and

presented using tools

from ELK stack or similar.

Service
instance

Logs on
individual
machines

Centralized
log server

Logs
indexing

Central Log
Server

Service
instances

Access logging

• Standard web server access logs.

• Enriched access events

asynchronously sent to events

stream.

• Indexing access logs via ELK

stack enables the in-depth

analysis of the structure of the

incoming traffic.

consume

Frontend
Service

Events
Stream

produce enriched
access event

presentindex

System metrics
• Host metrics - technical -

hardware/OS.

• Application metrics - application

software - either technical

or business oriented.

• Custom metrics - calculated when

standard host or application

metrics are not available.

• Metrics are also useful

for resource usage predictions

and thus preventive maintenance.

Metrics
collector

Metrics
database

Metrics
frontend

custom
metrics

host and
application

metrics

CLOUD
SERVICES

CACHE

SCHEMA
REGISTRY

COORDINATION
SERVICE

MONITORING

CENTRAL
LOGGING

EVENTS
STREAM

DISTRIBUTED
FS

WAREHOUSING
APPLICATIONS

MACHINE LEARNING
APPLICATIONS

GPUs

LOAD BALANCER

MICROSERVICES

DB R R

RDBMS/NoSQL RDBMS/NoSQL

Datacenters

• full control

• high customizability, low flexibility

• very high costs

• no SLA guarantees

On premise - within organization premises:

Colocation center - leased equipment in a rented facility:
• acceptable control

• acceptable customizability, moderate flexibility

• moderate costs

• some SLA guarantees

• low control

• low customizability, high flexibility

• costs depending on usage

• very low risk of downtime

Public Cloud infrastructure:

Cloud considerations

Tedious process of
going through

customer support in
case of non-trivial

issues.

Relatively high costs
for high-performance
virtual machines and

egress network
traffic.

Shared and
unpredictable
networking.

Limited possibility
of low level

optimizations.

Why just don’t move everything into
a public Cloud?

Datacenter traffic
distribution
• Traffic affinity - traffic is pretargeted

to a particular DC.

• geoDNS - dedicated DNS service

redirects traffic to the nearest

datacenter based on the

approximate client location.

• Anycast - IP addresses are shared

between DCs and traffic

is redirected based

on network router decision

for the shortest path.

RDBMS/NoSQL RDBMS/NoSQL

LOAD BALANCER

MICROSERVICES

CACHE

DB R R

LOAD BALANCER

MICROSERVICES

geoDNS Anycast

DC 1 DC n

...

CACHE

DB R R

RDBMS/NoSQL RDBMS/NoSQL

Datacenter
specialization
• Individual DCs don’t have to be

equivalent.

• Apart from resources size, DCs may

also differ in dedicated purpose:

• Operational DCs with frontend

services.

• Warehousing and analytical DCs with

events stream processing

components.

• Machine learning oriented DCs

with GPUs

RDBMS/NoSQL RDBMS/NoSQL

LOAD BALANCER

MICROSERVICES

RDBMS/NoSQL RDBMS/NoSQL

LOAD BALANCER

MICROSERVICES

Operational DC 1 Operational DC 2

...

Events
Mirroring

Events
Mirroring

CLOUD
SERVICES

EVENTS STREAM

DISTRIBUTED
FS

WAREHOUSING
APPLICATIONS

MACHINE LEARNING
APPLICATIONS

GPUs

Data replication Data replication

Warehousing DC

Machine learning DC

Datacenter networking

Meet-me room

ISP router

Google switch

ISP router

Cross
connect

Fiber optic ethernet

Server Rack Server Rack

Server Rack Server Rack

Cross
Connect

Meet-me room

ISP router

Google switch

ISP router

Cross
connect

Fiber optic ethernet

Datacenter

1st Floor

2nd Floor

Datacenter networking

VPN over
Internet

ISP router ISP router

Server Rack Server Rack

DC 1 DC 2

DWDM - Dense Wavelength Division Multiplexing.

Server Rack Server Rack

DC 1 DC 2

Transponder

ISP switch

Transponder

ISP switch

DWDM
MUX

DWDM
MUX

λ1 λ1

Datacenter networking

Datacenter
operations
• “Remote hands” - onsite personnel

to perform physical infrastructure

management.

• Remote management via IPMI

(Intelligent Platform Management Interface).

• Remote management via infrastructure

automation software - Puppet, Ansible, etc.

BMC

Switch

Servers with IPMI
interface

IPMI

Remote
management

Application deployment

App App App

Operating System

Hardware

App App App App

Bin/Library Bin/Library

Operating System Operating System

Virtual Machine Virtual Machine

Hypervisor

Operating System

Hardware

App

Bin/Library

Container

App

Bin/Library

Container

App

Bin/Library

Container

Container Runtime

Operating System

Hardware

Traditional Deployment Virtualized Deployment Container Deployment

Application deployment

Version Control
System

Build System

Deployment Manager

Docker registry

Servers with Docker Runtime

fetch
version push image

pull image

orchestrate
deployment

schedule
build

Application deployment

Version Control
System

Build System

Actor

Docker registry

Kubernetes Cluster

fetch
version push image

pull image

deploy
specification

Performance
considerations
Hardware optimizations:

Software optimizations:

• Fast and reliable networking in Data Centers.

• High-end servers with NVMe storage.

• Caching as much as possible.

• Garbage Collector optimization.

• Reduce malicious or low quality traffic.

• Using compression.

• Mechanical sympathy.

Summary

2. 3.1. 4.

We have discussed:

The overview of a

generic architecture

of a web based

modern distributed

system and its

components.

The basics of various

maintenance related

aspects of distributed

systems like logging,

metrics collection

and application

deployment.

The basics of Data

Center design,

operations and

networking.

Some performance

considerations.

Will have to run on
infrastructure shared

by RTB House.

The assessment of the
project will be mostly

focused on a distributed
systems features like

scalability, reliability and
maintainability.

Can be done in pairs

Evaluation
Evaluation of the course will be solely

based on the project:

Thank you.

Piotr Jaczewski

